
Nelson L C Domingues

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9074106/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The rs5743836 polymorphism in TLR9 confers a population-based increased risk of non-Hodgkin lymphoma. Genes and Immunity, 2012, 13, 197-201.	4.1	35
2	Review of the Syntheses and Activities of Some Sulfur-Containing Drugs. Current Organic Synthesis, 2020, 17, 192-210.	1.3	34
3	An efficient aqueous phase synthesis of benzimidazoles/benzothiazoles in the presence of β-cyclodextrin. RSC Advances, 2015, 5, 41716-41720.	3.6	27
4	l²-Cyclodextrin as a recyclable catalyst: aqueous phase one-pot four-component synthesis of polyfunctionalized pyrroles. RSC Advances, 2016, 6, 43339-43344.	3.6	27
5	Novel multi-component syntheses of pyrimidines using β-CD in aqueous medium. Tetrahedron Letters, 2016, 57, 1656-1660.	1.4	23
6	Synthesis of α-aminophosphonates using a mesoporous silica catalyst produced from sugarcane bagasse ash. RSC Advances, 2016, 6, 23981-23986.	3.6	18
7	The study of biocatalyzed thio-Michael reaction: a greener and multi-gram protocol. Tetrahedron Letters, 2014, 55, 430-434.	1.4	17
8	Zn[aminoacid]2 hybrid materials applied as heterogeneous catalysts in the synthesis of β-enaminones. Tetrahedron Letters, 2014, 55, 4123-4125.	1.4	17
9	[Ce(l-Pro)2]2 (Oxa) as a heterogeneous recyclable catalyst: synthesis of pyrazoles under mild reaction conditions. New Journal of Chemistry, 2016, 40, 9471-9476.	2.8	17
10	Zinc Di(l-prolinate)-Mediated Synthesis of α-Aminophosphonates under Mild Conditions. Synthesis, 2016, 48, 4489-4494.	2.3	16
11	Discontinuation of tyrosine kinase inhibitors in CML patients in real-world clinical practice at a single institution. BMC Cancer, 2018, 18, 1245.	2.6	15
12	Spectroscopic and theoretical studies of some N-methoxy-N-methyl-2-[(4′-substituted) phenylthio]propanamides. Journal of Molecular Structure, 2009, 920, 393-400.	3.6	14
13	A novel and efficient methodology for thio-Michael addition in the synthesis of cis-β-thio-α-aminoacid derivatives using Zn[(<scp> </scp>)-Pro] ₂ as heterogeneous catalyst. RSC Advances, 2016, 6, 4979-4982.	3.6	14
14	Recyclable [Ce(l-Pro)2]2 (Oxa) used as Heterogeneous Catalyst: One-Pot Synthesis of 2,3-Dihydroquinazolin-4(1H)-ones in Ethanol. Synthesis, 2017, 49, 5143-5148.	2.3	12
15	Efficient palladiumâ€catalyzed Câ€5 crossâ€coupling reaction of benzoâ€2,1,3â€thiadiazole at Câ€5â€position: , potential class of AChE inhibitors. Applied Organometallic Chemistry, 2020, 34, e5650.	А _{3.5}	12
16	Stereochemical and electronic interaction studies of some N-methoxy-N-methyl-2-[(4′-substituted)phenylsulfinyl]propanamides. Journal of Molecular Structure, 2008, 892, 360-372.	3.6	11
17	A new, efficient and recyclable [Ce(<scp>l</scp> -Pro)] ₂ (Oxa) heterogeneous catalyst used in the Kabachnik–Fields reaction. RSC Advances, 2016, 6, 27213-27219.	3.6	11
18	C-S Cross-Coupling Reaction Using a Recyclable Palladium Prolinate Catalyst under Mild and Green Conditions. ChemistrySelect, 2017, 2, 9063-9068.	1.5	11

NELSON L C DOMINGUES

#	Article	IF	CITATIONS
19	Effect of therapy-related acute myeloid leukemia on the outcome of patients with acute myeloid leukemia. Oncology Letters, 2016, 12, 262-268.	1.8	10
20	A New Procedure for Addition of Thiols to Imines using Zn[(<i>L</i>)â€Proline] ₂ as a Catalyst under Mild Conditions. ChemistrySelect, 2017, 2, 4462-4465.	1.5	9
21	Spectroscopic and theoretical studies of some N-methoxy-N-methyl-2-[(4′-substituted) phenylsulfonyl]propanamides. Journal of Molecular Structure, 2009, 935, 60-68.	3.6	8
22	Hybrid material from Zn[aminoacid]2 applied in the thio-Michael synthesis. Tetrahedron Letters, 2014, 55, 5179-5181.	1.4	8
23	[Zn(L â€Pro) 2] as a Simple and Efficient Catalyst: A Convenient Route for the Synthesis of Thiaâ€Michael Derivatives via Green Chemical Approach. ChemistrySelect, 2019, 4, 13304-13306.	1.5	8
24	Stingless Bee Propolis: New Insights for Anticancer Drugs. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-18.	4.0	8
25	Highly Efficient Zn(Lâ€Pro) ₂ Catalyst for the Synthesis of 2â€Phenyl Benzimidazoles and 2â€Phenyl Benzothiazoles <i>via</i> Aerobic Oxygenation. ChemistrySelect, 2022, 7, .	1.5	8
26	Lipase catalyzed 1,2-addition of thiols to imines under mild conditions. New Journal of Chemistry, 2018, 42, 1642-1645.	2.8	7
27	A new arylsulfanyl-benzo-2,1,3-thiadiazoles derivative produces an anti-amnesic effect in mice by modulating acetylcholinesterase activity. Chemico-Biological Interactions, 2022, 351, 109736.	4.0	6
28	Spectroscopic and theoretical studies of some p-substituted α-methylthio-α-diethoxyphosphorylacetophenones. Journal of Molecular Structure, 2006, 798, 57-63.	3.6	5
29	Detection of the Epstein-Barr virus in blood and bone marrow mononuclear cells of patients with aggressive B-cell non-Hodgkin's lymphoma is not associated with prognosis. Oncology Letters, 2012, 4, 1285-1289.	1.8	5
30	Cobalt Used as a Novel and Reusable Catalyst: A New and One-Pot Synthesis of Isatin-Derived N,S-Acetals Using Substituted Isatins and Thiols. Synthesis, 2019, 51, 4014-4022.	2.3	5
31	Cerium catalyst promoted C–S cross-coupling: synthesis of thioethers, dapsone and RN-18 precursors. Organic and Biomolecular Chemistry, 2019, 17, 10103-10108.	2.8	4
32	Complete assignment of1H and13C NMR spectra of some α-arylthio and α-arylsulfonyl substituted N-methoxy-N-methyl propionamides. Magnetic Resonance in Chemistry, 2007, 45, 87-89.	1.9	3
33	An Efficient Cul-Catalyzed C–S Cross-Coupling Reaction under Microwave Irradiation in DMF. Synthesis, 0, , .	2.3	3
34	Conformational preferences for some 2-substituted N-methoxy-N-methylacetamides through spectroscopic and theoretical studies. Journal of Molecular Structure, 2010, 977, 106-116.	3.6	2
35	Anchored Pd(0) Nanoparticles on Synthetic Talc for the Synthesis of Biaryls and a Precursor of Angiotensin II Inhibitors. Synthesis, 2021, 53, 933-942.	2.3	2
36	Palladium Nanoparticles Anchored on Magnesium Organosilicate: An Effective and Selective Catalyst for the Heck Reaction. Synthesis, 2021, 53, 1301-1306.	2.3	1

#	Article	IF	CITATIONS
37	Crystal structure of N-methoxy-N-methyl-2-[(4'-nitrophenyl)sulfinyl]- propanamide, C11H14N2O5S. Zeitschrift Fur Kristallographie - New Crystal Structures, 2006, 221, 161-162.	0.3	0
38	Complete assignment of ¹ H and ¹³ C NMR spectra of αâ€phenylsulfinylâ€ <i>N</i> â€methoxy― <i>N</i> â€methylpropionamide and some <i>p</i> â€substituted deri Magnetic Resonance in Chemistry, 2009, 47, 270-272.	va tiy es.	0
39	Spectroscopic and theoretical studies of some 2-substituted N-methoxy-N-methyl-amides. Journal of Molecular Structure, 2013, 1031, 91-103.	3.6	0
40	Bundle Approach to Reduce Bloodstream Infections in Neutropenic Hematologic. Acta Medica Portuguesa, 2015, 28, 474.	0.4	0
41	A Novel and Efficient Methodology for the Synthesis of Vinylamide Derivatives Using [Ce(Lâ€Pro)2]2Ox as Heterogeneous Catalyst. ChemistrySelect, 2018, 3, 6570-6574.	1.5	0
42	Crystal structure of N-phenyl-3-[2-(4'-chlorophenylthio)propanoyl]-2- azetidinone, C18H16ClNO2S. Zeitschrift Fur Kristallographie - New Crystal Structures, 2006, 221, 163-164.	0.3	0
43	Prognostic Impact of High Hematogones in Acute Myeloid Leukemia. Blood, 2012, 120, 1435-1435.	1.4	0