Zheng Xi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9073967/publications.pdf Version: 2024-02-01

		304743	434195
30	2,712	22	31
papers	citations	h-index	g-index
32	32	32	4529
all docs	docs citations	times ranked	citing authors

ZHENC XI

#	Article	IF	CITATIONS
1	Ultrasmall Iridium Nanoparticles as Efficient Peroxidase Mimics for Colorimetric Bioassays. ACS Applied Nano Materials, 2022, 5, 6089-6093.	5.0	3
2	Nickel–Platinum Nanoparticles as Peroxidase Mimics with a Record High Catalytic Efficiency. Journal of the American Chemical Society, 2021, 143, 2660-2664.	13.7	124
3	Strain Effect in Palladium Nanostructures as Nanozymes. Nano Letters, 2020, 20, 272-277.	9.1	85
4	Nanocrystals of platinum-group metals as peroxidase mimics forin vitrodiagnostics. Chemical Communications, 2020, 56, 14962-14975.	4.1	17
5	Controllable synthesis of platinum diselenide (PtSe ₂) inorganic fullerene. Journal of Materials Chemistry A, 2020, 8, 18925-18932.	10.3	12
6	Ultrafast and sensitive colorimetric detection of ascorbic acid with Pd-Pt core-shell nanostructure as peroxidase mimic. Sensors International, 2020, 1, 100031.	8.4	7
7	Efficient Hydrogen Generation from Ammonia Borane and Tandem Hydrogenation or Hydrodehalogenation over AuPd Nanoparticles. ACS Sustainable Chemistry and Engineering, 2020, 8, 2814-2821.	6.7	45
8	Template Regeneration in Galvanic Replacement: A Route to Highly Diverse Hollow Nanostructures. ACS Nano, 2020, 14, 791-801.	14.6	38
9	Size Effect in Pdâ^'Ir Coreâ€Shell Nanoparticles as Nanozymes. ChemBioChem, 2020, 21, 2440-2444.	2.6	40
10	One-Pot Synthesis of Single-Crystal Palladium Nanoparticles with Controllable Sizes for Applications in Catalysis and Biomedicine. ACS Applied Nano Materials, 2019, 2, 4605-4612.	5.0	20
11	Ternary CoPtAu Nanoparticles as a General Catalyst for Highly Efficient Electroâ€oxidation of Liquid Fuels. Angewandte Chemie - International Edition, 2019, 58, 11527-11533.	13.8	83
12	Ternary CoPtAu Nanoparticles as a General Catalyst for Highly Efficient Electroâ€oxidation of Liquid Fuels. Angewandte Chemie, 2019, 131, 11651-11657.	2.0	20
13	Reductive amination of ethyl levulinate to pyrrolidones over AuPd nanoparticles at ambient hydrogen pressure. Green Chemistry, 2019, 21, 1895-1899.	9.0	44
14	Nobleâ€Metal Nanostructures as Highly Efficient Peroxidase Mimics. ChemNanoMat, 2019, 5, 860-868.	2.8	16
15	Hard-Magnet L10-CoPt Nanoparticles Advance Fuel Cell Catalysis. Joule, 2019, 3, 124-135.	24.0	326
16	A new strategy to synthesize anisotropic SmCo ₅ nanomagnets. Nanoscale, 2018, 10, 8735-8740.	5.6	37
17	Fe Stabilization by Intermetallic L1 ₀ -FePt and Pt Catalysis Enhancement in L1 ₀ -FePt/Pt Nanoparticles for Efficient Oxygen Reduction Reaction in Fuel Cells. Journal of the American Chemical Society, 2018, 140, 2926-2932.	13.7	312
18	Maximizing the Catalytic Activity of Nanoparticles through Monolayer Assembly on Nitrogenâ€Đoped Graphene. Angewandte Chemie, 2018, 130, 460-464.	2.0	2

ZHENG XI

#	Article	IF	CITATIONS
19	Maximizing the Catalytic Activity of Nanoparticles through Monolayer Assembly on Nitrogenâ€Doped Graphene. Angewandte Chemie - International Edition, 2018, 57, 451-455.	13.8	47
20	One-pot formic acid dehydrogenation and synthesis of benzene-fused heterocycles over reusable AgPd/WO _{2.72} nanocatalyst. Journal of Materials Chemistry A, 2018, 6, 23766-23772.	10.3	29
21	Engineered Noble-Metal Nanostructures for <i>in Vitro</i> Diagnostics. Chemistry of Materials, 2018, 30, 8391-8414.	6.7	33
22	Room-Temperature Chemoselective Reduction of 3-Nitrostyrene to 3-Vinylaniline by Ammonia Borane over Cu Nanoparticles. Journal of the American Chemical Society, 2018, 140, 16460-16463.	13.7	73
23	NixWO2.72 nanorods as an efficient electrocatalyst for oxygen evolution reaction. Green Energy and Environment, 2017, 2, 119-123.	8.7	15
24	AgPd Nanoparticles Deposited on WO _{2.72} Nanorods as an Efficient Catalyst for One-Pot Conversion of Nitrophenol/Nitroacetophenone into Benzoxazole/Quinazoline. Journal of the American Chemical Society, 2017, 139, 5712-5715.	13.7	71
25	Atomic scale deposition of Pt around Au nanoparticles to achieve much enhanced electrocatalysis of Pt. Nanoscale, 2017, 9, 7745-7749.	5.6	24
26	Tuning Sn-Catalysis for Electrochemical Reduction of CO ₂ to CO via the Core/Shell Cu/SnO ₂ Structure. Journal of the American Chemical Society, 2017, 139, 4290-4293.	13.7	553
27	Pd Nanoparticles Coupled to WO _{2.72} Nanorods for Enhanced Electrochemical Oxidation of Formic Acid. Nano Letters, 2017, 17, 2727-2731.	9.1	136
28	Stabilizing CuPd Nanoparticles via CuPd Coupling to WO _{2.72} Nanorods in Electrochemical Oxidation of Formic Acid. Journal of the American Chemical Society, 2017, 139, 15191-15196.	13.7	106
29	A New Core/Shell NiAu/Au Nanoparticle Catalyst with Pt-like Activity for Hydrogen Evolution Reaction. Journal of the American Chemical Society, 2015, 137, 5859-5862.	13.7	274
30	Core/Shell Au/MnO Nanoparticles Prepared Through Controlled Oxidation of AuMn as an Electrocatalyst for Sensitive H ₂ O ₂ Detection. Angewandte Chemie - International Edition, 2014, 53, 12508-12512.	13.8	84