
Gary D Stormo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/907392/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Directed Evolution of an Enhanced POU Reprogramming Factor for Cell Fate Engineering. Molecular Biology and Evolution, 2021, 38, 2854-2868.	8.9	11
2	Redefining fundamental concepts of transcription initiation in bacteria. Nature Reviews Genetics, 2020, 21, 699-714.	16.3	100
3	Alternative Splicing During the <i>Chlamydomonasreinhardtii</i> Cell Cycle. G3: Genes, Genomes, Genetics, 2020, 10, 3797-3810.	1.8	15
4	Autoregulation of yeast ribosomal proteins discovered by efficient search for feedback regulation. Communications Biology, 2020, 3, 761.	4.4	11
5	Comparison of discriminative motif optimization using matrix and DNA shape-based models. BMC Bioinformatics, 2018, 19, 86.	2.6	10
6	Is Autogenous Posttranscriptional Gene Regulation Common?. RNA Technologies, 2018, , 217-227.	0.3	0
7	Quantitative profiling of BATF family proteins/JUNB/IRF hetero-trimers using Spec-seq. BMC Molecular Biology, 2018, 19, 5.	3.0	8
8	Review of the algal biology program within the National Alliance for Advanced Biofuels and Bioproducts. Algal Research, 2017, 22, 187-215.	4.6	69
9	Quantitative specificity of STAT1 and several variants. Nucleic Acids Research, 2017, 45, 8199-8207.	14.5	11
10	BEESEM: estimation of binding energy models using HT-SELEX data. Bioinformatics, 2017, 33, 2288-2295.	4.1	34
11	SMARCAD1 Contributes to the Regulation of Naive Pluripotency by Interacting with Histone Citrullination. Cell Reports, 2017, 18, 3117-3128.	6.4	40
12	Coop-Seq Analysis Demonstrates that Sox2 Evokes Latent Specificities in the DNA Recognition by Pax6. Journal of Molecular Biology, 2017, 429, 3626-3634.	4.2	4
13	Measuring quantitative effects of methylation on transcription factor–DNA binding affinity. Science Advances, 2017, 3, eaao1799.	10.3	62
14	Quantitative profiling of selective Sox/POU pairing on hundreds of sequences in parallel by Coop-seq. Nucleic Acids Research, 2017, 45, 832-845.	14.5	30
15	Inherent limitations of probabilistic models for protein-DNA binding specificity. PLoS Computational Biology, 2017, 13, e1005638.	3.2	19
16	Combinatorial <i>Cis</i> -regulation in <i>Saccharomyces</i> Species. G3: Genes, Genomes, Genetics, 2016, 6, 653-667.	1.8	10
17	DNA Structure Helps Predict Protein Binding. Cell Systems, 2016, 3, 216-218.	6.2	4
18	A quantitative understanding of lac repressor's binding specificity and flexibility. Quantitative Biology, 2015, 3, 69-80.	0.5	13

#	Article	IF	CITATIONS
19	Determination of specificity influencing residues for key transcription factor families. Quantitative Biology, 2015, 3, 115-123.	0.5	2
20	DNA Motif Databases and Their Uses. Current Protocols in Bioinformatics, 2015, 51, 2.15.1-2.15.6.	25.8	16
21	Response Element Composition Governs Correlations between Binding Site Affinity and Transcription in Glucocorticoid Receptor Feed-forward Loops. Journal of Biological Chemistry, 2015, 290, 19756-19769.	3.4	32
22	Intermediate DNA methylation is a conserved signature of genome regulation. Nature Communications, 2015, 6, 6363.	12.8	91
23	Spec-seq: determining protein-DNA-binding specificity by sequencing. Briefings in Functional Genomics, 2015, 14, 30-38.	2.7	35
24	High-Resolution Specificity from DNA Sequencing Highlights Alternative Modes of Lac Repressor Binding. Genetics, 2014, 198, 1329-1343.	2.9	46
25	An improved predictive recognition model for Cys2-His2 zinc finger proteins. Nucleic Acids Research, 2014, 42, 4800-4812.	14.5	66
26	Discriminative motif optimization based on perceptron training. Bioinformatics, 2014, 30, 941-948.	4.1	19
27	Innate Host Defense Requires TFEB-Mediated Transcription of Cytoprotective and Antimicrobial Genes. Immunity, 2014, 40, 896-909.	14.3	284
28	Modeling the specificity of proteinâ€DNA interactions. Quantitative Biology, 2013, 1, 115-130.	0.5	173
29	Using defined finger–finger interfaces as units of assembly for constructing zinc-finger nucleases. Nucleic Acids Research, 2013, 41, 2455-2465.	14.5	27
30	Identification of Cilia Genes That Affect Cell-Cycle Progression Using Whole-Genome Transcriptome Analysis in <i>Chlamydomonas reinhardtti</i> . G3: Genes, Genomes, Genetics, 2013, 3, 979-991.	1.8	64
31	Global analysis of Drosophila Cys2-His2 zinc finger proteins reveals a multitude of novel recognition motifs and binding determinants. Genome Research, 2013, 23, 928-940.	5.5	70
32	An Overview of RNA Sequence Analyses: Structure Prediction, ncRNA Gene Identification, and RNAi Design. Current Protocols in Bioinformatics, 2013, 43, 12.1.1-12.1.3.	25.8	26
33	Novel Modeling of Combinatorial miRNA Targeting Identifies SNP with Potential Role in Bone Density. PLoS Computational Biology, 2012, 8, e1002830.	3.2	38
34	Conserved Motifs and Prediction of Regulatory Modules in Caenorhabditis elegans. G3: Genes, Genomes, Genetics, 2012, 2, 469-481.	1.8	17
35	Improved Models for Transcription Factor Binding Site Identification Using Nonindependent Interactions. Genetics, 2012, 191, 781-790.	2.9	123
36	ScerTF: a comprehensive database of benchmarked position weight matrices for Saccharomyces species. Nucleic Acids Research, 2012, 40, D162-D168.	14.5	73

#	Article	IF	CITATIONS
37	Fast, Sensitive Discovery of Conserved Genome-Wide Motifs. Journal of Computational Biology, 2012, 19, 139-147.	1.6	5
38	Recognition models to predict DNA-binding specificities of homeodomain proteins. Bioinformatics, 2012, 28, i84-i89.	4.1	36
39	Exploring the DNA-recognition potential of homeodomains. Genome Research, 2012, 22, 1889-1898.	5.5	26
40	An optimized two-finger archive for ZFN-mediated gene targeting. Nature Methods, 2012, 9, 588-590.	19.0	114
41	An Introduction to Recognizing Functional Domains. Current Protocols in Bioinformatics, 2011, 34, Unit 2.1.	25.8	3
42	Quantitative analysis demonstrates most transcription factors require only simple models of specificity. Nature Biotechnology, 2011, 29, 480-483.	17.5	161
43	Assessing the Effects of Symmetry on Motif Discovery and Modeling. PLoS ONE, 2011, 6, e24908.	2.5	3
44	A nutrientâ€sensitive interaction between Sirt1 and HNFâ€1α regulates <i>Crp</i> expression. Aging Cell, 2011, 10, 305-317.	6.7	21
45	Maximally Efficient Modeling of DNA Sequence Motifs at All Levels of Complexity. Genetics, 2011, 187, 1219-1224.	2.9	30
46	A modified bacterial one-hybrid system yields improved quantitative models of transcription factor specificity. Nucleic Acids Research, 2011, 39, e83-e83.	14.5	25
47	Novel sequence-based method for identifying transcription factor binding sites in prokaryotic genomes. Bioinformatics, 2010, 26, 2672-2677.	4.1	21
48	Determining the specificity of protein–DNA interactions. Nature Reviews Genetics, 2010, 11, 751-760.	16.3	264
49	Detecting Coevolution of Functionally Related Proteins for Automated Protein Annotation. , 2010, , 99-105.		2
50	Motif Discovery Using Expectation Maximization and Gibbs' Sampling. Methods in Molecular Biology, 2010, 674, 85-95.	0.9	11
51	Modeling the Quantitative Specificity of DNA-Binding Proteins from Example Binding Sites. PLoS ONE, 2009, 4, e6736.	2.5	8
52	An Introduction to Sequence Similarity ("Homologyâ€) Searching. Current Protocols in Bioinformatics, 2009, 27, Unit 3.1 3.1.1-7.	25.8	21
53	Discovering structural <i>cis</i> â€regulatory elements by modeling the behaviors of mRNAs. Molecular Systems Biology, 2009, 5, 268.	7.2	32
54	Discovering cis-Regulatory RNAs in Shewanella Genomes by Support Vector Machines. PLoS Computational Biology, 2009, 5, e1000338.	3.2	20

#	Article	IF	CITATIONS
55	Inferring Binding Energies from Selected Binding Sites. PLoS Computational Biology, 2009, 5, e1000590.	3.2	188
56	Improving Gene-finding in Chlamydomonas reinhardtii:GreenGenie2. BMC Genomics, 2009, 10, 210.	2.8	18
57	The AP-1 transcription factor Batf controls TH17 differentiation. Nature, 2009, 460, 405-409.	27.8	524
58	The <i>cis</i> -regulatory map of <i>Shewanella</i> genomes. Nucleic Acids Research, 2008, 36, 5376-5390.	14.5	17
59	Computational identification of the normal and perturbed genetic networks involved in myeloid differentiation and acute promyelocytic leukemia. Genome Biology, 2008, 9, R38.	9.6	26
60	Analysis of Homeodomain Specificities Allows the Family-wide Prediction of Preferred Recognition Sites. Cell, 2008, 133, 1277-1289.	28.9	401
61	Genome wide screens in yeast to identify potential binding sites and target genes of DNA-binding proteins. Nucleic Acids Research, 2008, 36, e8-e8.	14.5	24
62	Context-dependent DNA recognition code for C2H2 zinc-finger transcription factors. Bioinformatics, 2008, 24, 1850-1857.	4.1	47
63	TRANSCRIPTIONAL PROFILES OF HUMAN EPITHELIAL CELLS IN RESPONSE TO HEAT. Shock, 2008, 29, 623-630.	2.1	19
64	RNA Sampler: a new sampling based algorithm for common RNA secondary structure prediction and structural alignment. Bioinformatics, 2007, 23, 1883-1891.	4.1	61
65	A global approach to identify differentially expressed genes in cDNA (two-color) microarray experiments. Bioinformatics, 2007, 23, 2073-2079.	4.1	22
66	Identification of muscle-specific regulatory modules in Caenorhabditis elegans. Genome Research, 2007, 17, 348-357.	5.5	38
67	PAP: a comprehensive workbench for mammalian transcriptional regulatory sequence analysis. Nucleic Acids Research, 2007, 35, W238-W244.	14.5	23
68	Computational identification and functional validation of regulatory motifs in cartilage-expressed genes. Genome Research, 2007, 17, 1438-1447.	5.5	30
69	Putting numbers on the network connections. BioEssays, 2007, 29, 717-721.	2.5	11
70	Evidence for Active Maintenance of Inverted Repeat Structures Identified by a Comparative Genomic Approach. PLoS ONE, 2007, 2, e262.	2.5	14
71	An Introduction to Recognizing Functional Domains. Current Protocols in Bioinformatics, 2006, 15, Unit 2.1.	25.8	3
72	Training of the next generation of biostatisticians: a call to action in the U.S Statistics in Medicine, 2006, 25, 3415-3429.	1.6	37

#	Article	IF	CITATIONS
73	An Overview of RNA Structure Prediction and Applications to RNA Gene Prediction and RNA i Design. Current Protocols in Bioinformatics, 2006, 13, Unit 12.1.	25.8	7
74	Molecular Diagnostics in Sepsis: From Bedside to Bench. Journal of the American College of Surgeons, 2006, 203, 585-598.e1.	0.5	38
75	An improved map of conserved regulatory sites for Saccharomyces cerevisiae. BMC Bioinformatics, 2006, 7, 113.	2.6	617
76	Direct, Androgen Receptor-Mediated Regulation of the FKBP5 Gene via a Distal Enhancer Element. Endocrinology, 2006, 147, 590-598.	2.8	151
77	Using mRNAs lengths to accurately predict the alternatively spliced gene products in Caenorhabditis elegans. Bioinformatics, 2006, 22, 1239-1244.	4.1	3
78	Target Selectivity of Vertebrate Notch Proteins. Journal of Biological Chemistry, 2006, 281, 5106-5119.	3.4	197
79	A systematic model to predict transcriptional regulatory mechanisms based on overrepresentation of transcription factor binding profiles. Genome Research, 2006, 16, 405-413.	5.5	65
80	PLASTICITY OF THE HUMAN INNATE IMMUNE RESPONSE TO ACUTE INFECTION DURING CRITICAL ILLNESS: DEVELOPMENT OF THE RIBOLEUKOGRAM Critical Care Medicine, 2006, 34, A47.	0.9	0
81	Quantitative analysis of EGR proteins binding to DNA: assessing additivity in both the binding site and the protein. BMC Bioinformatics, 2005, 6, 176.	2.6	22
82	PolyMAPr: Programs for polymorphism database mining, annotation, and functional analysis. Human Mutation, 2005, 25, 110-117.	2.5	37
83	Procom: a web-based tool to compare multiple eukaryotic proteomes. Bioinformatics, 2005, 21, 1693-1694.	4.1	7
84	Editing efficiency of a Drosophila gene correlates with a distant splice site selection. Rna, 2005, 11, 563-566.	3.5	15
85	Identifying the conserved network of cis-regulatory sites of a eukaryotic genome. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 17400-17405.	7.1	68
86	Combining SELEX with quantitative assays to rapidly obtain accurate models of protein-DNA interactions. Nucleic Acids Research, 2005, 33, e141-e141.	14.5	75
87	Application of genome-wide expression analysis to human health and disease. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 4801-4806.	7.1	238
88	Making connections between novel transcription factors and their DNA motifs. Genome Research, 2005, 15, 312-320.	5.5	49
89	Pairwise local structural alignment of RNA sequences with sequence similarity less than 40%. Bioinformatics, 2005, 21, 1815-1824.	4.1	138
90	enoLOGOS: a versatile web tool for energy normalized sequence logos. Nucleic Acids Research, 2005, 33, W389-W392.	14.5	199

#	Article	IF	CITATIONS
91	Computational technique for improvement of the position-weight matrices for the DNA/protein binding sites. Nucleic Acids Research, 2005, 33, 2290-2301.	14.5	73
92	An Iterated loop matching approach to the prediction of RNA secondary structures with pseudoknots. Bioinformatics, 2004, 20, 58-66.	4.1	213
93	The Neuropeptide Pigment-Dispersing Factor Coordinates Pacemaker Interactions in the Drosophila Circadian System. Journal of Neuroscience, 2004, 24, 7951-7957.	3.6	296
94	A graph theoretical approach for predicting common RNA secondary structure motifs including pseudoknots in unaligned sequences. Bioinformatics, 2004, 20, 1591-1602.	4.1	92
95	Novel transcription regulatory elements in Caenorhabditis elegans muscle genes. Genome Research, 2004, 14, 2457-2468.	5.5	27
96	ILM: a web server for predicting RNA secondary structures with pseudoknots. Nucleic Acids Research, 2004, 32, W146-W149.	14.5	32
97	RNA interference of achaete-scute homolog 1 in mouse prostate neuroendocrine cells reveals its gene targets and DNA binding sites. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 5559-5564.	7.1	46
98	Quantitative modeling of DNA-protein interactions: effects of amino acid substitutions on binding specificity of the Mnt repressor. Nucleic Acids Research, 2004, 32, 4026-4032.	14.5	16
99	Expression profiling using random genomic DNA microarrays identifies differentially expressed genes associated with three major developmental stages of the protozoan parasite Leishmania major. Molecular and Biochemical Parasitology, 2004, 136, 71-86.	1.1	109
100	Training the Next Generation of Informaticians: The Impact of "BISTI" and Bioinformatics–A Report from the American College of Medical Informatics. Journal of the American Medical Informatics Association: JAMIA, 2004, 11, 167-172.	4.4	52
101	PromoLign: A database for upstream region analysis and SNPs. Human Mutation, 2004, 23, 534-539.	2.5	33
102	Comparative Genomics Identifies a Flagellar and Basal Body Proteome that Includes the BBS5 Human Disease Gene. Cell, 2004, 117, 541-552.	28.9	721
103	Analysis of Chlamydomonas reinhardtii Genome Structure Using Large-Scale Sequencing of Regions on Linkage Groups I and III. Journal of Eukaryotic Microbiology, 2003, 50, 145-155.	1.7	24
104	An Introduction to Recognizing Functional Domains. Current Protocols in Bioinformatics, 2003, 00, 2.1.1.	25.8	1
105	New Tricks for an Old Dogma. Molecular Cell, 2003, 11, 1419-1420.	9.7	10
106	Computational identification of the Spo0A-phosphate regulon that is essential for the cellular differentiation and development in Gram-positive spore-forming bacteria. Nucleic Acids Research, 2003, 31, 6891-6903.	14.5	27
107	Combining phylogenetic data with co-regulated genes to identify regulatory motifs. Bioinformatics, 2003, 19, 2369-2380.	4.1	227
108	EVOLUTION: Heirlooms in the Attic. Science, 2003, 302, 997-999.	12.6	13

#	Article	IF	CITATIONS
109	An Overview of RNA Structure Prediction. Current Protocols in Bioinformatics, 2003, 4, 12.1.1.	25.8	Ο
110	Identification of a Novel cis-Regulatory Element Involved in the Heat Shock Response in Caenorhabditis elegans Using Microarray Gene Expression and Computational Methods. Genome Research, 2002, 12, 701-712.	5.5	262
111	Influence of the period-dependent circadian clock on diurnal, circadian, and aperiodic gene expression in Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 9562-9567.	7.1	167
112	Specificity of Mnt 'master residue' obtained from in vivo and in vitro selections. Nucleic Acids Research, 2002, 30, 5539-5548.	14.5	6
113	Putting the Leishmania genome to work: functional genomics by transposon trapping and expression profiling. Philosophical Transactions of the Royal Society B: Biological Sciences, 2002, 357, 47-53.	4.0	27
114	Sepsis gene expression profiling: Murine splenic compared with hepatic responses determined by using complementary DNA microarrays. Critical Care Medicine, 2002, 30, 2711-2721.	0.9	51
115	Probabilistic Code for DNA Recognition by Proteins of the EGR Family. Journal of Molecular Biology, 2002, 323, 701-727.	4.2	109
116	Mining genome databases to identify and understand new gene regulatory systems. Current Opinion in Microbiology, 2002, 5, 149-153.	5.1	34
117	Additivity in protein-DNA interactions: how good an approximation is it?. Nucleic Acids Research, 2002, 30, 4442-4451.	14.5	284
118	Is there a code for protein-DNA recognition? Probab(ilistical)ly?. BioEssays, 2002, 24, 466-475.	2.5	94
119	Role of gene expression microarray analysis in finding complex disease genes. Genetic Epidemiology, 2002, 23, 37-56.	1.3	31
120	INJURY IN THE ERA OF GENOMICS. Shock, 2001, 15, 165-170.	2.1	43
121	Discovering common stem-loop motifs in unaligned RNA sequences. Nucleic Acids Research, 2001, 29, 2135-2144.	14.5	122
122	Do mRNAs act as direct sensors of small molecules to control their expression?. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 9465-9467.	7.1	85
123	Selection of optimal DNA oligos for gene expression arrays. Bioinformatics, 2001, 17, 1067-1076.	4.1	213
124	Non-independence of Mnt repressor-operator interaction determined by a new quantitative multiple fluorescence relative affinity (QuMFRA) assay. Nucleic Acids Research, 2001, 29, 2471-2478.	14.5	169
125	A Comparative Genomics Approach to Prediction of New Members of Regulons. Genome Research, 2001, 11, 566-584.	5.5	113
126	Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. Richard Durbin , Sean R. Eddy , Anders Krogh , Graeme Mitchison. Quarterly Review of Biology, 2000, 75, 313-314.	0.1	6

#	Article	IF	CITATIONS
127	Improved statistical methods reveal direct interactions between 16S and 23S rRNA. Nucleic Acids Research, 2000, 28, 4938-4943.	14.5	6
128	<title>Probing protein: DNA interactions using a uniform monolayer of DNA and surface plasmon resonance</title> . , 2000, , .		5
129	Gene-Finding Approaches for Eukaryotes. Genome Research, 2000, 10, 394-397.	5.5	95
130	Specificity, free energy and information content in protein–DNA interactions. Trends in Biochemical Sciences, 1998, 23, 109-113.	7.5	312
131	Information Content and Free Energy in DNA–Protein Interactions. Journal of Theoretical Biology, 1998, 195, 135-137.	1.7	41
132	PromFD 1.0: a computer program that predicts eukaryotic pol II promoters using strings and IMD matrices. Bioinformatics, 1997, 13, 29-35.	4.1	12
133	Finding the most significant common sequence and structure motifs in a set of RNA sequences. Nucleic Acids Research, 1997, 25, 3724-3732.	14.5	188
134	Quantitative specificity of the Mnt repressor. Journal of Molecular Biology, 1997, 271, 178-194.	4.2	81
135	DNA sequence classification using DAWGs. Lecture Notes in Computer Science, 1997, , 339-352.	1.3	10
136	Recognizing Functional Domains in Biological Sequences. , 1997, , 105-116.		0
137	[2] Escherichia coli promoter sequences: Analysis and prediction. Methods in Enzymology, 1996, 273, 30-42.	1.0	69
138	Multi-alphabet consensus algorithm for identification of low specificity protein-DNA interactions. Nucleic Acids Research, 1995, 23, 1434-1440.	14.5	21
139	A consensus sequence for binding of Lrp to DNA. Journal of Bacteriology, 1995, 177, 4872-4880.	2.2	130
140	Identification of Protein Coding Regions In Genomic DNA. Journal of Molecular Biology, 1995, 248, 1-18.	4.2	195
141	Detection of deletions in the mitochondrial genome ofCaenorhabditis elegans. Nucleic Acids Research, 1994, 22, 1075-1078.	14.5	73
142	Quantitative DNA Sequencing to Determine the Relative Protein-DNA Binding Constants to Multiple DNA Sequences. Analytical Biochemistry, 1994, 219, 230-239.	2.4	7
143	Quantitative analysis of ribosome binding sites in E.coli. Nucleic Acids Research, 1994, 22, 1287-1295.	14.5	147
144	Specificity of the Mnt Protein. Journal of Molecular Biology, 1993, 229, 821-826.	4.2	16

#	Article	IF	CITATIONS
145	Identification of coding regions in genomic DNA sequences: an application of dynamic programming and neural networks. Nucleic Acids Research, 1993, 21, 607-613.	14.5	180
146	Analysis of five presumptive protein-coding sequences clustered between the primosome genes, 41 and 61, of bacteriophages T4, T2, and T6. Journal of Virology, 1993, 67, 2305-2316.	3.4	17
147	Identifying constraints on the higher-order structure of RNA: continued development and application of comparative sequence analysis methods. Nucleic Acids Research, 1992, 20, 5785-5795.	14.5	285
148	Splicing signals inDrosophila: intron size, information content, and consensus sequences. Nucleic Acids Research, 1992, 20, 4255-4262.	14.5	419
149	Expectation maximization algorithm for identifying protein-binding sites with variable lengths from unaligned DNA fragments. Journal of Molecular Biology, 1992, 223, 159-170.	4.2	132
150	Translation initiation in Escherichia coli: sequences within the ribosome-binding site. Molecular Microbiology, 1992, 6, 1219-1229.	2.5	329
151	[22] Probing information content of DNA-binding sites. Methods in Enzymology, 1991, 208, 458-468.	1.0	11
152	Specificity of the Mnt protein determined by binding to randomized operators Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 5699-5703.	7.1	30
153	[7] High-level translation initiation. Methods in Enzymology, 1990, 185, 89-93.	1.0	270
154	[13] Consensus patterns in DNA. Methods in Enzymology, 1990, 183, 211-221.	1.0	165
155	Identification of consensus patterns in unaligned DNA sequences known to be functionally related. Bioinformatics, 1990, 6, 81-92.	4.1	222
156	Sequence requirements of the hammerhead RNA self-cleavage reaction. Biochemistry, 1990, 29, 10695-10702.	2.5	489
157	Excess information at bacteriophage T7 genomic promoters detected by a random cloning technique. Nucleic Acids Research, 1989, 17, 659-674.	14.5	69
158	Identifying protein-binding sites from unaligned DNA fragments Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 1183-1187.	7.1	400
159	Computer Methods for Analyzing Sequence Recognition of Nucleic Acids. Annual Review of Biophysics and Biophysical Chemistry, 1988, 17, 241-263.	12.2	95
160	Autogenous regulatory site on the bacteriophage T4 gene 32 messenger RNA. Journal of Molecular Biology, 1988, 201, 517-535.	4.2	146
161	Translational Regulation in Bacteriophages. , 1987, , 27-49.		10
162	Information content of binding sites on nucleotide sequences. Journal of Molecular Biology, 1986, 188, 415-431.	4.2	872

#	Article	IF	CITATIONS
163	Quantitative analysis of the relationship between nucleotide sequence and functional activity. Nucleic Acids Research, 1986, 14, 6661-6679.	14.5	156
164	Sequence landscapes. Nucleic Acids Research, 1986, 14, 141-158.	14.5	47
165	Translationsl regulation of expression of the bacteriophage T4 lysozyme gene. Nucleic Acids Research, 1986, 14, 5813-5826.	14.5	139
166	Translation Initiation. , 1986, , 195-224.		96
167	Delila system tools. Nucleic Acids Research, 1984, 12, 129-140.	14.5	45
168	lacZ translation initiation mutations. Journal of Molecular Biology, 1984, 177, 663-683.	4.2	115
169	The bacteriophage T4regAgene: primary sequence of a translational repressor. Nucleic Acids Research, 1984, 12, 5979-5993.	14.5	34
170	A design for computer nucleic-acid-sequence storage, retrieval, and manipulation. Nucleic Acids Research, 1982, 10, 3013-3024.	14.5	60
171	Characterization of translational initiation sites inE. coli. Nucleic Acids Research, 1982, 10, 2971-2996.	14.5	729
172	Autoregulation of gene expression. Journal of Molecular Biology, 1982, 162, 795-818.	4.2	111
173	Use of the â€~Perceptron' algorithm to distinguish translational initiation sites inE. coli. Nucleic Acids Research, 1982, 10, 2997-3011.	14.5	649