Gabriella Puppo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9073866/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	One- and Multi-dimensional CWENOZ Reconstructions for Implementing Boundary Conditions Without Ghost Cells. Communications on Applied Mathematics and Computation, 2023, 5, 143-169.	0.7	3
2	Quinpi: Integrating Conservation Laws with CWENO Implicit Methods. Communications on Applied Mathematics and Computation, 2023, 5, 343-369.	0.7	6
3	Angle dependence in coupling conditions for shallow water equations at channel junctions. Computers and Mathematics With Applications, 2022, 108, 49-65.	1.4	3
4	An all speed second order well-balanced IMEX relaxation scheme for the Euler equations with gravity. Journal of Computational Physics, 2020, 420, 109723.	1.9	25
5	Semi-Conservative Finite Volume Schemes for Conservation Laws. SIAM Journal of Scientific Computing, 2019, 41, B576-B600.	1.3	4
6	Arbitrary Order Finite Volume Well-Balanced Schemes for the Euler Equations with Gravity. SIAM Journal of Scientific Computing, 2019, 41, A695-A721.	1.3	37
7	An Asymptotic-Preserving All-Speed Scheme for Fluid Dynamics and Nonlinear Elasticity. SIAM Journal of Scientific Computing, 2019, 41, A2850-A2879.	1.3	20
8	BGK Polyatomic Model for Rarefied Flows. Journal of Scientific Computing, 2019, 78, 1893-1916.	1.1	15
9	CWENO: Uniformly accurate reconstructions for balance laws. Mathematics of Computation, 2018, 87, 1689-1719.	1.1	65
10	Cool WENO schemes. Computers and Fluids, 2018, 169, 71-86.	1.3	29
11	Kinetic ES-BGK Models for a Multi-component Gas Mixture. Springer Proceedings in Mathematics and Statistics, 2018, , 195-208.	0.1	4
12	Simulation of particle dynamics for rarefied flows: Backflow in thruster plumes. European Journal of Mechanics, B/Fluids, 2017, 63, 25-38.	1.2	3
13	An all-speed relaxation scheme for gases and compressible materials. Journal of Computational Physics, 2017, 351, 1-24.	1.9	12
14	Multivalued Fundamental Diagrams of Traffic Flow in the Kinetic FokkerPlanck Limit. Multiscale Modeling and Simulation, 2017, 15, 1267-1293.	0.6	12
15	A consistent kinetic model for a two-component mixture with an application to plasma. Kinetic and Related Models, 2017, 10, 445-465.	0.5	39
16	Well-Balanced High Order 1D Schemes on Non-uniform Grids and Entropy Residuals. Journal of Scientific Computing, 2016, 66, 1052-1076.	1.1	10
17	Accurate Asymptotic Preserving Boundary Conditions for Kinetic Equations on Cartesian Grids. Journal of Scientific Computing, 2015, 65, 735-766.	1.1	15
18	A robust and adaptive recoveryâ€based discontinuous Galerkin method for the numerical solution of convection–diffusion equations. International Journal for Numerical Methods in Fluids, 2015, 77, 63-91.	0.9	21

GABRIELLA PUPPO

#	Article	IF	CITATIONS
19	A Local Velocity Grid Approach for BGK Equation. Communications in Computational Physics, 2014, 16, 956-982.	0.7	9
20	Central Schemes for Nonconservative Hyperbolic Systems. SIAM Journal of Scientific Computing, 2012, 34, B523-B558.	1.3	15
21	A hybrid method for hydrodynamic-kinetic flow – Part II – Coupling of hydrodynamic and kinetic models. Journal of Computational Physics, 2012, 231, 5217-5242.	1.9	14
22	Microscopically implicit–macroscopically explicit schemes for the BGK equation. Journal of Computational Physics, 2012, 231, 299-327.	1.9	17
23	Numerical Entropy and Adaptivity for Finite Volume Schemes. Communications in Computational Physics, 2011, 10, 1132-1160.	0.7	43
24	A hybrid method for hydrodynamic-kinetic flow Part I: A particle-grid method for reducing stochastic noise in kinetic regimes. Journal of Computational Physics, 2011, 230, 5660-5683.	1.9	5
25	Velocity Discretization in Numerical Schemes for BCK Equations. , 2008, , 857-864.		1
26	A Comparison Between Relaxation and Kurganov—Tadmor Schemes. Mathematics in Industry, 2008, , 236-240.	0.1	0
27	High-Order Relaxation Schemes for Nonlinear Degenerate Diffusion Problems. SIAM Journal on Numerical Analysis, 2007, 45, 2098-2119.	1.1	45
28	Implicit–Explicit Schemes for BGK Kinetic Equations. Journal of Scientific Computing, 2007, 32, 1-28.	1.1	143
29	Well-balanced finite volume schemes of arbitrary order of accuracy for shallow water flows. Journal of Computational Physics, 2006, 213, 474-499.	1.9	254
30	Staggered Finite Difference Schemes for Conservation Laws. Journal of Scientific Computing, 2006, 27, 403-418.	1.1	5
31	An Error Indicator for Semidiscrete Schemes. , 2006, , 103-108.		0
32	Central RungeKutta Schemes for Conservation Laws. SIAM Journal of Scientific Computing, 2005, 26, 979-999.	1.3	27
33	Numerical Entropy Production for Central Schemes. SIAM Journal of Scientific Computing, 2004, 25, 1382-1415.	1.3	33
34	A Fourth-Order Central WENO Scheme for Multidimensional Hyperbolic Systems of Conservation Laws. SIAM Journal of Scientific Computing, 2002, 24, 480-506.	1.3	121
35	Numerical Entropy Production on Shocks and Smooth Transitions. Journal of Scientific Computing, 2002, 17, 263-271.	1.1	12
36	On the behavior of the total variation in CWENO methods for conservation laws. Applied Numerical Mathematics, 2000, 33, 407-414.	1.2	22

GABRIELLA PUPPO

#	Article	IF	CITATIONS
37	A third order central WENO scheme for 2D conservation laws. Applied Numerical Mathematics, 2000, 33, 415-421.	1.2	58
38	Compact Central WENO Schemes for Multidimensional Conservation Laws. SIAM Journal of Scientific Computing, 2000, 22, 656-672.	1.3	259
39	A Vortex-Grid Method for Prandtl's Equations. SIAM Journal of Scientific Computing, 1999, 20, 1229-1251.	1.3	2
40	High-Order Central Schemes for Hyperbolic Systems of Conservation Laws. SIAM Journal of Scientific Computing, 1999, 21, 294-322.	1.3	85
41	Central WENO schemes for hyperbolic systems of conservation laws. ESAIM: Mathematical Modelling and Numerical Analysis, 1999, 33, 547-571.	0.8	313
42	Bubble Stabilization of Spectral Methods: The Multidimensional Case. Journal of Scientific Computing, 1998, 13, 115-149.	1.1	0
43	Bubble stabilization of spectral Legendre methods for the advection-diffusion equation. Computer Methods in Applied Mechanics and Engineering, 1994, 118, 239-263.	3.4	14