Xin Min

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9073721/publications.pdf

Version: 2024-02-01

118793 126858 4,112 89 33 62 citations h-index g-index papers 3101 90 90 90 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Attapulgite: a promising natural mineral as carrier material for fatty acids phase change material. Journal of Thermal Analysis and Calorimetry, 2022, 147, 7203-7212.	2.0	9
2	Innovative Materials Science via Machine Learning. Advanced Functional Materials, 2022, 32, 2108044.	7.8	67
3	Nickel Quantum Dots Anchored in Biomassâ€Derived Nitrogenâ€Doped Carbon as Bifunctional Electrocatalysts for Overall Water Splitting. Advanced Materials Interfaces, 2022, 9, .	1.9	7
4	A novel 2D graphene oxide modified α-AgVO3 nanorods: Design, fabrication, and enhanced visible-light photocatalytic performance. Journal of Advanced Ceramics, 2022, 11, 308-320.	8.9	36
5	Hierarchical fibrous honeycomb ceramics with high load capability and low lightâ€off temperature for the nextâ€generation auto emissions standards. Chemistry - A European Journal, 2022, , .	1.7	O
6	Effects of Preparation and Activation Manner on Surface Area of Hierarchical Porous Carbons Derived from Nut (Euryale ferox) Shell. ChemistrySelect, 2022, 7, .	0.7	0
7	A high quantum yield red phosphor NaGdSiO4: Eu3+ with intense emissions from the 5D0â†'7F1,2 transition. Ceramics International, 2022, 48, 23213-23223.	2.3	26
8	A novel nano-porous aluminum substrate with anodizing treatment to encapsulate 1-tetrapropanol as composite phase change materials for thermal energy utilization. Chemical Engineering Journal, 2021, 404, 124588.	6.6	11
9	Preparation and Characterization of Flexible Smart Glycol/Polyvinylpyrrolidone/Nano-Al ₂ O ₃ Phase Change Fibers. Energy & Energ	2.5	14
10	Form-stable and tough paraffin-Al2O3/high density polyethylene composites as environment-friendly thermal energy storage materials: preparation, characterization and analysis. Journal of Thermal Analysis and Calorimetry, 2021, 146, 2089-2099.	2.0	16
11	Enhanced thermal conductivity of composite phase change materials based on carbon modified expanded perlite. Materials Chemistry and Physics, 2021, 261, 124226.	2.0	33
12	Preparation and Characterization of Composite Phase Change Materials Based on Lauricâ€Myristic Acid and Expanded Vermiculite with Carbon Layer. ChemistrySelect, 2021, 6, 3884-3890.	0.7	4
13	Polydopamine Nanocluster Embedded Nanofibrous Membrane via Blow Spinning for Separation of Oil/Water Emulsions. Molecules, 2021, 26, 3258.	1.7	6
14	Polyethylene glycol/modified carbon foam composites for efficient light-thermal conversion and storage. Polymer, 2021, 228, 123894.	1.8	38
15	Potassium-ion batteries: outlook on present and future technologies. Energy and Environmental Science, 2021, 14, 2186-2243.	15.6	402
16	Paraffin/Ti ₃ C ₂ T <i>_x</i> Mxene@Gelatin Aerogels Composite Phase-Change Materials with High Solar-Thermal Conversion Efficiency and Enhanced Thermal Conductivity for Thermal Energy Storage. Energy & Energy & Energy 35, 2805-2814.	2.5	36
17	Simple routes from natural graphite to graphite foams: Preparation, structure and properties. Carbon, 2020, 159, 527-541.	5.4	31
18	Metalâ€Based Nanocatalysts via a Universal Design on Cellular Structure. Advanced Science, 2020, 7, 1902051.	5.6	48

#	Article	IF	Citations
19	Polyacrylonitrile/polyethylene glycol phase-change material fibres prepared with hybrid polymer blends and nano-SiC fillers via centrifugal spinning. Polymer, 2020, 186, 122012.	1.8	38
20	An Efficient Environmentally Friendly Composite Material Based on Carbonized Biological Cellulose/Paraffin: Thermal and Sustainable Properties Analysis. ChemistrySelect, 2020, 5, 12051-12056.	0.7	5
21	Thermally Conductive and Shapeâ€Stabilized Polyethylene Glycol/Carbon Foam Phaseâ€Change Composites for Thermal Energy Storage. ChemistrySelect, 2020, 5, 3217-3224.	0.7	14
22	Multiple Energy Transfer in Luminescence-Tunable Single-Phased Phosphor NaGdTiO4: Tm3+, Dy3+, Sm3+. Nanomaterials, 2020, 10, 1249.	1.9	10
23	Yellow Emission Obtained by Combination of Broadband Emission and Multi-Peak Emission in Garnet Structure Na2YMg2V3O12: Dy3+ Phosphor. Molecules, 2020, 25, 542.	1.7	9
24	Metalâ€Based Nanocatalysts: Metalâ€Based Nanocatalysts via a Universal Design on Cellular Structure (Adv. Sci. 3/2020). Advanced Science, 2020, 7, 2070013.	5.6	2
25	A textile-based SnO2 ultra-flexible electrode for lithium-ion batteries. Energy Storage Materials, 2019, 16, 597-606.	9.5	150
26	N–Si doped carbon-embedded TiO ₂ composite fibers: a new photocatalysts with high yields by centrifugal spinning. Materials Research Express, 2019, 6, 1150h1.	0.8	1
27	Hierarchically channel-guided porous wood-derived shape-stabilized thermal regulated materials with enhanced thermal conductivity for thermal energy storage. Materials Research Express, 2019, 6, 115515.	0.8	56
28	Efficient Adsorption of the Cd(II) and As(V) Using Novel Adsorbent Ferrihydrite/Manganese Dioxide Composites. ACS Omega, 2019, 4, 18627-18636.	1.6	18
29	New Efficient Visible-Light-Driven Photocatalyst of Chitin-Modified Titanium Dioxide/Carbon Fiber Composites for Wastewater. Scientific Reports, 2019, 9, 16321.	1.6	11
30	Preparation and properties of polystyrene/silica fibres flexible thermal insulation materials by centrifugal spinning. Polymer, 2019, 185, 121964.	1.8	25
31	In situ synthesis of adsorptive β-Bi ₂ O ₃ /BiOBr photocatalyst with enhanced degradation efficiency. Journal of Materials Research, 2019, 34, 3450-3461.	1.2	12
32	Lauric-stearic acid eutectic mixture/carbonized biomass waste corn cob composite phase change materials: Preparation and thermal characterization. Thermochimica Acta, 2019, 674, 21-27.	1.2	76
33	Optimization of Von Mises Stress Distribution in Mesoporous αâ€Fe ₂ O ₃ /C Hollow Bowls Synergistically Boosts Gravimetric/Volumetric Capacity and Highâ€Rate Stability in Alkaliâ€Ion Batteries. Advanced Functional Materials, 2019, 29, 1902822.	7.8	65
34	Preparation, structure, luminescence properties of terbium doped perovskite-like structure green-emitting phosphors SrLaAlO4:Tb3+. Optical Materials, 2019, 95, 109191.	1.7	19
35	Preparation and properties of polyacrylonitrile/polyethylene glycol composite fibers phase change materials by centrifugal spinning. Materials Research Express, 2019, 6, 095502.	0.8	16
36	Facile synthesis of αâ€si ₃ N ₄ nanoneedles and their photoluminescence properties. International Journal of Applied Ceramic Technology, 2019, 16, 2373-2379.	1.1	2

#	Article	IF	Citations
37	Growth mechanism and synchronous synthesis of 1D $\langle i \rangle \hat{l}^2 \langle i \rangle$ -sialon nanostructures and $\langle i \rangle \hat{l}^2 \langle i \rangle$ -sialon-Si $\langle sub \rangle 3 \langle sub \rangle N \langle sub \rangle 4 \langle sub \rangle$ composite powders by a process of reduction nitridation. Materials Research Express, 2019, 6, 065054.	0.8	14
38	Synthesis and Luminescence Properties of a Novel Green-Yellow-Emitting Phosphor BiOCl:Pr3+ for Blue-Light-Based w-LEDs. Molecules, 2019, 24, 1296.	1.7	7
39	Dependence of crystal structure on mechanical and thermophysical properties of magnetoplumbiteâ€type LnMgAl ₁₁ O ₁₉ ceramics with substitution of Ln ³⁺ lons. International Journal of Applied Ceramic Technology, 2019, 16, 1596-1605.	1.1	5
40	Molten salt synthesis, growth mechanism, and photoluminescence of rod chlorapatite microcrystallites. CrystEngComm, 2019, 21, 1809-1817.	1.3	15
41	Research on slagâ€resistance of ZrNâ€SiAl <scp>ON</scp> â€SiCâ€C composite refractory in different atmospheres. International Journal of Applied Ceramic Technology, 2019, 16, 69-76.	1.1	3
42	Assembly of $\hat{l}^2\hat{a}\in S$ iC Nanowires film and humidity sensing performance. International Journal of Applied Ceramic Technology, 2019, 16, 1193-1199.	1.1	4
43	Preparation and performance of shape-stable phase change materials based on carbonized-abandoned orange peel and paraffin. Fullerenes Nanotubes and Carbon Nanostructures, 2019, 27, 289-298.	1.0	11
44	Preparation and characterization of form-stable tetradecanol–palmitic acid expanded perlite composites containing carbon fiber for thermal energy storage. Journal of Thermal Analysis and Calorimetry, 2019, 136, 1217-1225.	2.0	8
45	Preparation and thermal properties of fatty acid/diatomite form-stable composite phase change material for thermal energy storage. Solar Energy Materials and Solar Cells, 2018, 178, 273-279.	3.0	141
46	Novel humic acid-based carbon materials: adsorption thermodynamics and kinetics for cadmium(II) ions. Colloid and Polymer Science, 2018, 296, 537-546.	1.0	4
47	Paraffin/expanded graphite phase change composites with enhanced thermal conductivity prepared by implanted $\langle i \rangle^2 \langle i \rangle$ -SiC nanowires with chemical vapor deposition method. Materials Research Express, 2018, 5, 025503.	0.8	9
48	Thermal energy storage properties and thermal reliability of PEG/bone char composite as a form-stable phase change material. Journal of Thermal Analysis and Calorimetry, 2018, 132, 1753-1761.	2.0	33
49	Synthesis and characterization of beeswax-tetradecanol-carbon fiber/expanded perlite form-stable composite phase change material for solar energy storage. Composites Part A: Applied Science and Manufacturing, 2018, 107, 180-188.	3.8	43
50	Tunable optical properties and stability of lead free all inorganic perovskites (Cs ₂ Snl _x Cl _{6â°x}). Journal of Materials Chemistry A, 2018, 6, 2577-2584.	5.2	55
51	Novel pyrochlore-type La2Zr2O7: Eu3+ red phosphors: Synthesis, structural, luminescence properties and theoretical calculation. Dyes and Pigments, 2018, 157, 47-54.	2.0	77
52	Preparation and performance of novel polyvinylpyrrolidone/polyethylene glycol phase change materials composite fibers by centrifugal spinning. Chemical Physics Letters, 2018, 691, 314-318.	1.2	36
53	Preparation of carbon-coated Fe3O4 porous particles and their adsorption properties of iron (III) ion. Water Science and Technology: Water Supply, 2018, 18, 306-317.	1.0	4
54	Honeycomb-like structured biological porous carbon encapsulating PEG: A shape-stable phase change material with enhanced thermal conductivity for thermal energy storage. Energy and Buildings, 2018, 158, 1049-1062.	3.1	275

#	Article	IF	CITATIONS
55	Preparation of Al ₂ O ₃ â€"SiC composite powder from kyanite tailings via carbothermal reduction process. Advances in Applied Ceramics, 2018, 117, 9-15.	0.6	20
56	Processing and electrochemical properties of CNT reinforced carbon nanofibers prepared by pressurized gyration. Journal of Materials Research, 2018, 33, 4251-4260.	1.2	2
57	Synthesis and photoluminescence properties of novel thermally robust Na3GdP2O8: Re3+ (Re = Sm, Dy) phosphors. Chemical Physics Letters, 2018, 710, 84-89.	1.2	32
58	Kinetics and equilibrium studies of the adsorption of methylene blue on ⟨i⟩Euryale ferox⟨ i⟩ shellâ€based activated carbon. Micro and Nano Letters, 2018, 13, 552-557.	0.6	3
59	Thermal conductivity enhanced polyethylene glycol/expanded perlite shape-stabilized composite phase change materials with Cu powder for thermal energy storage. Materials Research Express, 2018, 5, 095503.	0.8	20
60	Construction of an Ag3PO4 morphological homojunction for enhanced photocatalytic performance and mechanism investigation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 546, 99-106.	2.3	15
61	Thermal behavior of composite phase change materials based on polyethylene glycol and expanded vermiculite with modified porous carbon layer. Journal of Materials Science, 2018, 53, 13067-13080.	1.7	37
62	Red-Shifted Emission in Y ₃ MgSiAl ₃ O ₁₂ :Ce ³⁺ Garnet Phosphor for Blue Light-Pumped White Light-Emitting Diodes. Journal of Physical Chemistry C, 2018, 122, 15659-15665.	1.5	93
63	Carbothermal/aluminothermic reduction nitridation synthesis of ZrN–SiAlON refractory composites from zircon and bauxite: a comparative study of the reduction effect of reducers. Advances in Applied Ceramics, 2017, 116, 151-157.	0.6	2
64	Shape-stabilized composite phase change materials with high thermal conductivity based on stearic acid and modified expanded vermiculite. Renewable Energy, 2017, 112, 113-123.	4.3	104
65	Preparation and analysis of lightweight wall material with expanded graphite (EG)/paraffin composites for solar energy storage. Applied Thermal Engineering, 2017, 120, 107-114.	3.0	77
66	Form stable composite phase change materials from palmitic-lauric acid eutectic mixture and carbonized abandoned rice: Preparation, characterization, and thermal conductivity enhancement. Energy and Buildings, 2017, 154, 46-54.	3.1	75
67	Growth, structure, and luminescence properties of novel silica nanowires and interconnected nanorings. Scientific Reports, 2017, 7, 10482.	1.6	9
68	A new Ag/Bi7Ta3O18 plasmonic photocatalyst with a visible-light-driven photocatalytic activity. Journal of Materials Research, 2017, 32, 3650-3659.	1.2	7
69	Enhancement of thermal conductivity by the introduction of carbon nanotubes as a filler in paraffin/expanded perlite form-stable phase-change materials. Energy and Buildings, 2017, 149, 463-470.	3.1	151
70	Microstructure and electrochemical properties of polyacrylonitrile-based carbon micro- and nanofibers fabricated by centrifugal spinning. Chemical Physics Letters, 2017, 684, 14-19.	1.2	13
71	Preparation and characterization of the properties of polyethylene glycol @ Si 3 N 4 nanowires as phase-change materials. Chemical Engineering Journal, 2016, 301, 229-237.	6.6	79
72	Thermal conductivity enhancement of polyethylene glycol/expanded perlite with carbon layer for heat storage application. Energy and Buildings, 2016, 130, 113-121.	3.1	89

#	Article	IF	Citations
73	Preparation and performance of novel form-stable composite phase change materials based on polyethylene glycol/White Carbon Black assisted by super-ultrasound-assisted. Thermochimica Acta, 2016, 638, 35-43.	1.2	47
74	Mechanical Properties and Solid Particle Erosion Behavior of LaMgAl ₁₁ O ₁₉ –Al ₂ O ₃ Ceramic at Room and Elevated Temperatures. Journal of the American Ceramic Society, 2016, 99, 2138-2146.	1.9	13
75	Synthesis and characterization of lauric acid/expanded vermiculite as form-stabilized thermal energy storage materials. Energy and Buildings, 2016, 116, 677-683.	3.1	108
76	Preparation and thermal properties of shape-stabilized composite phase change materials based on polyethylene glycol and porous carbon prepared from potato. RSC Advances, 2016, 6, 15821-15830.	1.7	85
77	Enhanced thermal properties of novel shape-stabilized PEG composite phase change materials with radial mesoporous silica sphere for thermal energy storage. Scientific Reports, 2015, 5, 12964.	1.6	198
78	Study of erosion wear behavior of MgO stabilized ZrO ₂ ceramics due to solid particles impact at elevated temperature. Journal of the Ceramic Society of Japan, 2015, 123, 933-936.	0.5	2
79	Polyethylene glycol/mesoporous calcium silicate shape-stabilized composite phase change material: Preparation, characterization, and adjustable thermal property. Energy, 2015, 82, 333-340.	4.5	66
80	Enhanced thermal conductivity of PEG/diatomite shape-stabilized phase change materials with Ag nanoparticles for thermal energy storage. Journal of Materials Chemistry A, 2015, 3, 8526-8536.	5.2	300
81	Fabrication of morphology-controlled MgO nanowhiskers and "nanocrosses―by magnesiothermic synthesis in vapor phase at 550 °C. RSC Advances, 2015, 5, 62747-62751.	1.7	3
82	Diatomite: A promising natural candidate as carrier material for low, middle and high temperature phase change material. Energy Conversion and Management, 2015, 98, 34-45.	4.4	150
83	The Influence of Plateletâ€Like LaMgAl ₁₁ O ₁₉ on the Toughness of 3Âmol% Yttria Partially Stabilized Zirconia Ceramic. International Journal of Applied Ceramic Technology, 2015, 12, 176-183.	1.1	18
84	Synthesis of Sialon-SiC Composites from Kyanite Tailings by Carbothermal Reduction Nitridation. Jom, 2015, 67, 1379-1384.	0.9	12
85	Synthesis and optical properties of Pr3+-doped LaMgAl11O19–A novel blue converting yellow phosphor for white light emitting diodes. Ceramics International, 2015, 41, 4238-4242.	2.3	29
86	Luminescence Properties and Energyâ€Transfer Behavior of a Novel and Colorâ€Tunable LaMgAl ₁₁ O ₁₉ :Tm ³⁺ , Dy ³⁺ Phosphor for White Lightâ€Emitting Diodes. Journal of the American Ceramic Society, 2015, 98, 788-794.	1.9	43
87	Influence of LaMgAl ₁₁ O ₁₉ On Solid Particle Impact Erosion Wear Behavior of 3 <scp>YSZ</scp> Ceramic at Elevated Temperatures. International Journal of Applied Ceramic Technology, 2015, 12, 805-810.	1.1	2
88	Energy Transfer from Sm ³⁺ to Eu ³⁺ in Red-Emitting Phosphor LaMgAl ₁₁ O ₁₉ :Sm ³⁺ , Eu ³⁺ for Solar Cells and Near-Ultraviolet White Light-Emitting Diodes. Inorganic Chemistry, 2014, 53, 6060-6065.	1.9	133
89	Synthesis and luminescence properties of nitrided lanthanum magnesium hexaluminate LaMgAl11O19 phosphors. Ceramics International, 2014, 40, 4535-4539.	2.3	17