Kristine M Wadosky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9073553/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Molecular mechanisms underlying resistance to androgen deprivation therapy in prostate cancer. Oncotarget, 2016, 7, 64447-64470.	0.8	130
2	Androgen receptor splice variants and prostate cancer: From bench to bedside. Oncotarget, 2017, 8, 18550-18576.	0.8	100
3	TOP2A and EZH2 Provide Early Detection of an Aggressive Prostate Cancer Subgroup. Clinical Cancer Research, 2017, 23, 7072-7083.	3.2	87
4	Binary pan-cancer classes with distinct vulnerabilities defined by pro- or anti-cancer YAP/TEAD activity. Cancer Cell, 2021, 39, 1115-1134.e12.	7.7	86
5	The story so far: post-translational regulation of peroxisome proliferator-activated receptors by ubiquitination and SUMOylation. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 302, H515-H526.	1.5	76
6	Carboxyl terminus of Hsp70â€interacting protein (CHIP) is required to modulate cardiac hypertrophy and attenuate autophagy during exercise. Cell Biochemistry and Function, 2013, 31, 724-735.	1.4	39
7	Posttranslational regulation of FOXA1 by Polycomb and BUB3/USP7 deubiquitin complex in prostate cancer. Science Advances, 2021, 7, .	4.7	37
8	Muscle ring finger 1 and muscle ring finger 2 are necessary but functionally redundant during developmental cardiac growth and regulate E2F1â€mediated gene expression <i>in vivo</i> . Cell Biochemistry and Function, 2014, 32, 39-50.	1.4	36
9	Therapeutic Rationales, Progresses, Failures, and Future Directions for Advanced Prostate Cancer. International Journal of Biological Sciences, 2016, 12, 409-426.	2.6	32
10	Riluzole induces AR degradation via endoplasmic reticulum stress pathway in androgenâ€dependent and castrationâ€resistant prostate cancer cells. Prostate, 2019, 79, 140-150.	1.2	24
11	Muscle RING finger-1 attenuates IGF-I-dependent cardiomyocyte hypertrophy by inhibiting JNK signaling. American Journal of Physiology - Endocrinology and Metabolism, 2014, 306, E723-E739.	1.8	23
12	MuRF1 mono-ubiquitinates TRα to inhibit T3-induced cardiac hypertrophy in vivo. Journal of Molecular Endocrinology, 2016, 56, 273-290.	1.1	22
13	Role of Axl in T-Lymphocyte Survival in Salt-Dependent Hypertension. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 1638-1646.	1.1	16
14	Genetic myostatin decrease in the golden retriever muscular dystrophy model does not significantly affect the ubiquitin proteasome system despite enhancing the severity of disease. American Journal of Translational Research (discontinued), 2013, 6, 43-53.	0.0	15
15	Regulation of the calpain and ubiquitinâ€proteasome systems in a canine model of muscular dystrophy. Muscle and Nerve, 2011, 44, 553-562.	1.0	13
16	Return of Individual Research Results. American Journal of Pathology, 2020, 190, 918-933.	1.9	11
17	Innate Immune Cells Are Regulated by Axl in Hypertensive Kidney. American Journal of Pathology, 2018, 188, 1794-1806.	1.9	6
18	Evasion of targeted cancer therapy through stem-cell-like reprogramming. Molecular and Cellular Oncology, 2017, 4, e1291397.	0.3	5

2

KRISTINE M WADOSKY

#	Article	IF	CITATIONS
19	GRM1 is An Androgen-Regulated Gene and its Expression Correlates with Prostate Cancer Progression in Pre-Clinical Models. Clinical Cancer Research, 2016, , clincanres.0137.2016.	3.2	3
20	Generation of Tumor Organoids from Genetically Engineered Mouse Models of Prostate Cancer. Journal of Visualized Experiments, 2019, , .	0.2	3
21	Evidence that EZH2 Deregulation is an Actionable Therapeutic Target for Prevention of Prostate Cancer. Cancer Prevention Research, 2020, 13, 979-988.	0.7	3
22	Muscle RING fingerâ€1 (MuRF1) inhibits thyroid receptorα transcriptional activity and thyroid hormoneâ€dependent cardiac hypertrophy. FASEB Journal, 2012, 26, 137.6.	0.2	0
23	Muscle RING fingerâ€1 (MuRF1) inhibits IGF1â€dependent Akt activation and exerciseâ€induced cardiac hypertrophy. FASEB Journal, 2012, 26, 1076.1.	0.2	0
24	Regulation of the calpain and ubiquitin proteasome system in a canine model of muscular dystrophy with myostatin inhibition. FASEB Journal, 2012, 26, 478.3.	0.2	0
25	Muscle Ring Finger 1 (MuRF1) and MuRF2 Regulate Gene Expression Mediated by the E2F Transcription Factors and are Necessary but Functionally Redundant During Developmental Cardiac Growth In Vivo. FASEB Journal, 2013, 27, 1085.10.	0.2	0
26	Carboxyl terminus of Hsp70â€interacting protein (CHIP) is required to modulate cardiac hypertrophy and attenuate autophagy during exercise. FASEB Journal, 2013, 27, 711.7.	0.2	0
27	Muscle RING Fingerâ€1 (MuRF1) inhibits insulinâ€like growth factorâ€1 (IGFâ€1)â€dependent cardiomyocyte hypertrophy by reducing Akt nuclear activity. FASEB Journal, 2013, 27, 386.4.	0.2	0
28	Muscle RING fingerâ€1 (MuRF1) inhibits thyroid hormonedependent cardiomyocyte growth in vitro and in vivo. FASEB Journal, 2013, 27, 936.5.	0.2	0