Emiliano Bilotti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9073137/publications.pdf

Version: 2024-02-01

85 4,114 34 62 papers citations h-index g-index

87 87 87 4574
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Ultrahigh \hat{l}^2 -phase content poly(vinylidene fluoride) with relaxor-like ferroelectricity for high energy density capacitors. Nature Communications, 2019, 10, 4535.	5.8	259
2	A Review on Functionally Graded Materials and Structures via Additive Manufacturing: From Multiâ€Scale Design to Versatile Functional Properties. Advanced Materials Technologies, 2020, 5, 1900981.	3.0	230
3	Strain sensing behaviour of elastomeric composite films containing carbon nanotubes under cyclic loading. Composites Science and Technology, 2013, 74, 1-5.	3.8	221
4	Improved fracture toughness and integrated damage sensing capability by spray coated CNTs on carbon fibre prepreg. Composites Part A: Applied Science and Manufacturing, 2015, 70, 102-110.	3.8	213
5	Toward Stretchable Selfâ∈Powered Sensors Based on the Thermoelectric Response of PEDOT:PSS/Polyurethane Blends. Advanced Functional Materials, 2018, 28, 1704285.	7.8	171
6	Controlling the dynamic percolation of carbon nanotube based conductive polymer composites by addition of secondary nanofillers: The effect on electrical conductivity and tuneable sensing behaviour. Composites Science and Technology, 2013, 74, 85-90.	3.8	149
7	Fabrication and property prediction of conductive and strain sensing TPU/CNT nanocomposite fibres. Journal of Materials Chemistry, 2010, 20, 9449.	6.7	147
8	Influence of filler size on the properties of poly(lactic acid) (PLA)/graphene nanoplatelet (GNP) nanocomposites. European Polymer Journal, 2017, 86, 117-131.	2.6	137
9	Effect of melting and crystallization on the conductive network in conductive polymer composites. Polymer, 2009, 50, 3747-3754.	1.8	132
10	Additive manufacturing high performance graphene-based composites: A review. Composites Part A: Applied Science and Manufacturing, 2019, 124, 105483.	3.8	121
11	The use of carbon nanotubes for damage sensing and structural health monitoring in laminated composites: a review. Nanocomposites, 2015, 1, 167-184.	2.2	119
12	Preparation of Highâ€Performance Conductive Polymer Fibers through Morphological Control of Networks Formed by Nanofillers. Advanced Functional Materials, 2010, 20, 1424-1432.	7.8	117
13	Nanoscale interfacial electroactivity in PVDF/PVDF-TrFE blended films with enhanced dielectric and ferroelectric properties. Journal of Materials Chemistry C, 2017, 5, 3296-3305.	2.7	110
14	Transparent semi rystalline polymeric materials and their nanocomposites: A review. Polymer Engineering and Science, 2020, 60, 2351-2376.	1.5	98
15	Poly(lactic acid)/carbon nanotube nanocomposites with integrated degradation sensing. Polymer, 2013, 54, 6818-6823.	1.8	88
16	Multifunctional epoxy nanocomposites reinforced by two-dimensional materials: A review. Carbon, 2021, 185, 57-81.	5.4	88
17	Synergistic effects of spray-coated hybrid carbon nanoparticles for enhanced electrical and thermal surface conductivity of CFRP laminates. Composites Part A: Applied Science and Manufacturing, 2018, 105, 9-18.	3.8	74
18	Giant energy storage density in PVDF with internal stress engineered polar nanostructures. Nano Energy, 2020, 72, 104662.	8.2	72

#	Article	IF	Citations
19	Modified resistivity–strain behavior through the incorporation of metallic particles in conductive polymer composite fibers containing carbon nanotubes. Polymer International, 2013, 62, 134-140.	1.6	62
20	A Novel Concept for Highly Oriented Carbon Nanotube Composite Tapes or Fibres with High Strength and Electrical Conductivity. Macromolecular Materials and Engineering, 2009, 294, 749-755.	1.7	56
21	Thermal degradation and flammability behavior of polypropylene/clay/carbon nanotube composite systems. Polymers for Advanced Technologies, 2013, 24, 331-338.	1.6	53
22	Localized toughening of carbon/epoxy laminates using dissolvable thermoplastic interleaves and electrospun fibres. Composites Part A: Applied Science and Manufacturing, 2015, 79, 116-126.	3.8	52
23	In Situ Exfoliation of Graphene in Epoxy Resins: A Facile Strategy to Efficient and Large Scale Graphene Nanocomposites. ACS Applied Materials & Samp; Interfaces, 2016, 8, 24112-24122.	4.0	52
24	Substitutional doping of hybrid organic–inorganic perovskite crystals for thermoelectrics. Journal of Materials Chemistry A, 2020, 8, 13594-13599.	5.2	51
25	Filtration effects of graphene nanoplatelets in resin infusion processes: Problems and possible solutions. Composites Science and Technology, 2017, 139, 138-145.	3.8	48
26	Multiscale understanding of electric polarization in poly(vinylidene fluoride)-based ferroelectric polymers. Journal of Materials Chemistry C, 2020, 8, 16436-16442.	2.7	48
27	Preparation and properties of self-reinforced poly(lactic acid) composites based on oriented tapes. Composites Part A: Applied Science and Manufacturing, 2015, 76, 145-153.	3.8	46
28	The Influence of Solid-State Drawing on Mechanical Properties and Hydrolytic Degradation of Melt-Spun Poly(Lactic Acid) (PLA) Tapes. Fibers, 2015, 3, 523-538.	1.8	45
29	Effect of particle size and shape on positive temperature coefficient (PTC) of conductive polymer composites (CPC) — a model study. Materials and Design, 2016, 97, 459-463.	3.3	44
30	Remarkably enhanced polarisability and breakdown strength in PVDF-based interactive polymer blends for advanced energy storage applications. Polymer, 2019, 168, 246-254.	1.8	43
31	Thermoelectric Materials: Current Status and Future Challenges. Frontiers in Electronic Materials, 2021, 1, .	1.6	41
32	Thermoelectric Materials: A Brief Historical Survey from Metal Junctions and Inorganic Semiconductors to Organic Polymers. Israel Journal of Chemistry, 2014, 54, 534-552.	1.0	37
33	Crystallization kinetics and enhanced dielectric properties of free standing lead-free PVDF based composite films. Polymer, 2017, 121, 88-96.	1.8	37
34	Physical properties of poly lactic acid/clay nanocomposite films: Effect of filler content and annealing treatment. Journal of Applied Polymer Science, 2014, 131, .	1.3	36
35	Graphite Nanoplatelet Modified Epoxy Resin for Carbon Fibre Reinforced Plastics with Enhanced Properties. Journal of Nanomaterials, 2017, 2017, 1-10.	1.5	36
36	Ultra-High Actuation Stress Polymer Actuators as Light-Driven Artificial Muscles. ACS Applied Materials & Samp; Interfaces, 2020, 12, 33210-33218.	4.0	36

#	Article	IF	Citations
37	Universal Control on Pyroresistive Behavior of Flexible Selfâ€Regulating Heating Devices. Advanced Functional Materials, 2017, 27, 1702253.	7.8	34
38	Pyroresistivity in conductive polymer composites: a perspective on recent advances and new applications. Polymer International, 2019, 68, 299-305.	1.6	33
39	Static and dynamic percolation of phenoxy/carbon nanotube nanocomposites. European Polymer Journal, 2015, 68, 128-138.	2.6	31
40	Tailored pyroresistive performance and flexibility by introducing a secondary thermoplastic elastomeric phase into graphene nanoplatelet (GNP) filled polymer composites for self-regulating heating devices. Journal of Materials Chemistry C, 2018, 6, 2760-2768.	2.7	28
41	Flexible and Stretchable Selfâ€Powered Multiâ€Sensors Based on the Nâ€Type Thermoelectric Response of Polyurethane/Na <i></i> <fusb><fusb></fusb></fusb>	2.6	28
42	Integrated Damage Sensing in Fibre-Reinforced Composites with Extremely Low Carbon Nanotube Loadings. Journal of Nanomaterials, 2015, 2015, 1-7.	1.5	27
43	High mechanical reinforcing efficiency of layered poly(vinyl alcohol) – graphene oxide nanocomposites. Nanocomposites, 2015, 1, 89-95.	2.2	27
44	The effect of conductive network on positive temperature coefficient behaviour in conductive polymer composites. Composites Part A: Applied Science and Manufacturing, 2020, 139, 106074.	3.8	27
45	In-Situ Monitoring of Interlaminar Shear Damage in Carbon Fibre Composites. Advanced Composites Letters, 2015, 24, 096369351502400.	1.3	26
46	Flexible and Foldable Films of SWCNT Thermoelectric Composites and an S-Shape Thermoelectric Generator with a Vertical Temperature Gradient. ACS Applied Materials & Samp; Interfaces, 2022, 14, 5973-5982.	4.0	26
47	Synergistic Reinforcement of Highly Oriented Poly(propylene) Tapes by Sepiolite Nanoclay. Macromolecular Materials and Engineering, 2010, 295, 37-47.	1.7	24
48	Dynamic percolation in highly oriented conductive networks formed with different carbon nanofillers. Colloid and Polymer Science, 2012, 290, 1393-1401.	1.0	24
49	Glass-like transparent high strength polyethylene films by tuning drawing temperature. Polymer, 2019, 171, 180-191.	1.8	24
50	Nano- and Microfiber PVB Patches as Natural Oil Carriers for Atopic Skin Treatment. ACS Applied Bio Materials, 2020, 3, 7666-7676.	2.3	24
51	Breaking the Nanoparticle Loading–Dispersion Dichotomy in Polymer Nanocomposites with the Art of Croissant-Making. ACS Nano, 2018, 12, 9040-9050.	7.3	22
52	Sustainable and self-regulating out-of-oven manufacturing of FRPs with integrated multifunctional capabilities. Composites Science and Technology, 2020, 190, 108032.	3.8	22
53	Effect of mixed fillers on positive temperature coefficient of conductive polymer composites. Nanocomposites, 2016, 2, 58-64.	2.2	21
54	Self-powered ultrasensitive and highly stretchable temperature–strain sensing composite yarns. Materials Horizons, 2021, 8, 2513-2519.	6.4	21

#	Article	IF	CITATIONS
55	Enhanced Thermal and Electrical Properties of Polystyrene-Graphene Nanofibers via Electrospinning. Journal of Nanomaterials, 2016, 2016, 1-8.	1.5	20
56	Multilayer coextrusion of graphene polymer nanocomposites with enhanced structural organization and properties. Journal of Applied Polymer Science, 2018, 135, 46041.	1.3	19
57	Improving tensile strength and toughness of melt processed polyamide 6/multiwalled carbon nanotube composites by <i>in situ</i> polymerization and filler surface functionalization. Journal of Applied Polymer Science, 2011, 120, 133-140.	1.3	18
58	Oriented Poly(lactic acid)/Carbon Nanotube Composite Tapes with High Electrical Conductivity and Mechanical Properties. Macromolecular Materials and Engineering, 2015, 300, 1257-1267.	1.7	17
59	Processing and characterization of free standing highly oriented ferroelectric polymer films with remarkably low coercive field and high remnant polarization. Polymer, 2016, 100, 69-76.	1.8	17
60	Lightâ€Driven Actuation in Synthetic Polymers: A Review from Fundamental Concepts to Applications. Advanced Optical Materials, 2022, 10, .	3.6	16
61	Synergistic effects of filler size on thermal annealing-induced percolation in polylactic acid (PLA)/graphite nanoplatelet (GNP) nanocomposites. Nanocomposites, 2017, 3, 67-75.	2.2	15
62	Smart cord-rubber composites with integrated sensing capabilities by localised carbon nanotubes using a simple swelling and infusion method. Composites Science and Technology, 2018, 167, 24-31.	3.8	15
63	Dissolvable thermoplastic interleaves for carbon nanotube localization in carbon/epoxy laminates with integrated damage sensing capabilities. Structural Health Monitoring, 2018, 17, 59-66.	4.3	14
64	Highly stretchable and sensitive self-powered sensors based on the N-Type thermoelectric effect of polyurethane/Nax(Ni-ett)n/graphene oxide composites. Composites Communications, 2021, 28, 100952.	3.3	14
65	Graphene Delivery Systems for Hierarchical Fiber Reinforced Composites. MRS Advances, 2016, 1, 1339-1344.	0.5	12
66	Ultra-high energy density integrated polymer dielectric capacitors. Journal of Materials Chemistry A, 2022, 10, 10171-10180.	5.2	12
67	Thermoelectric behaviour of Bi-Te films on polymer substrates DC-sputtered at room-temperature in moving web deposition. Surface and Coatings Technology, 2020, 385, 125393.	2.2	11
68	High-Performance Transparent Laminates Based on Highly Oriented Polyethylene Films. ACS Applied Polymer Materials, 2020, 2, 2458-2468.	2.0	10
69	Nanoclay assisted ultra-drawing of polypropylene tapes. Nanocomposites, 2019, 5, 114-123.	2.2	9
70	Best of Both Worlds: Synergistically Derived Material Properties via Additive Manufacturing of Nanocomposites. Advanced Functional Materials, 2021, 31, 2103334.	7.8	8
71	Preparation of High Modulus Poly(Ethylene Terephthalate): Influence of Molecular Weight, Extrusion, and Drawing Parameters. International Journal of Polymer Science, 2017, 2017, 1-10.	1.2	7
72	Static and Dynamic Postannealing Strategies for Roll-to-Roll Fabrication of DC Magnetron Sputtered Bismuth Telluride Thin Films onto Polymer Webs. ACS Applied Materials & Samp; Interfaces, 2021, 13, 10149-10160.	4.0	7

#	Article	IF	CITATIONS
73	Low-cost Free-standing ferroelectric polymer films with high polarization produced via pressing-and-folding. Journal of Materiomics, 2022, 8, 640-648.	2.8	7
74	Optimization of Three-Roll Mill Parameters for In-Situ Exfoliation of Graphene. MRS Advances, 2016, 1 , 1389-1394.	0.5	6
75	A meshless method for the nonlinear von $K\tilde{A}_i$ rm \tilde{A}_i n plate with multiple folds of complex shape. Computational Mechanics, 2019, 64, 769-787.	2.2	5
76	Photo-thermal actuation of ultra-drawn high-density polyethylene. Polymer, 2020, 207, 122897.	1.8	4
77	Tailoring nanofibrillated cellulose through sonication and its potential use in molded pulp packaging. Nanocomposites, 2021, 7, 109-122.	2.2	3
78	Numerical simulations of folding mechanics in nonlinear plates using discontinuous rotations. International Journal of Solids and Structures, 2022, 249, 111675.	1.3	3
79	Nano-Engineered Hierarchical Carbon Fibres and Their Composites: Preparation, Properties and Multifunctionalities., 2017,, 101-116.		2
80	A Photoaddressable Liquid Crystalline Phase Transition in Graphene Oxide Nanocomposites. Advanced Functional Materials, 2019, 29, 1900738.	7.8	2
81	Dual In-Situ Water Diffusion Monitoring of GFRPs based on Optical Fibres and CNTs. Journal of Composites Science, 2020, 4, 97.	1.4	1
82	Photo-Actuation Stress of Ultra-Drawn, Chain-Extended Polyethylene. ACS Applied Polymer Materials, 2021, 3, 2211-2217.	2.0	1
83	Bioinspired Layer-by-Layer Poly(vinyl alcohol) - Graphene Oxide Nanocomposites. Materials Research Society Symposia Proceedings, 2012, 1410, 19.	0.1	0
84	Photoâ∈Responsive Graphene: A Photoaddressable Liquid Crystalline Phase Transition in Graphene Oxide Nanocomposites (Adv. Funct. Mater. 24/2019). Advanced Functional Materials, 2019, 29, 1970165.	7.8	0
85	Best of Both Worlds: Synergistically Derived Material Properties via Additive Manufacturing of Nanocomposites (Adv. Funct. Mater. 46/2021). Advanced Functional Materials, 2021, 31, 2170343.	7.8	0