Takeshi Hashimoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9072865/publications.pdf

Version: 2024-02-01

45 papers

1,879 citations

³⁶¹⁴¹³
20
h-index

265206 42 g-index

45 all docs

45 docs citations

45 times ranked

2083 citing authors

#	Article	IF	CITATIONS
1	Mechanical unloading of 3D-engineered muscle leads to muscle atrophy by suppressing protein synthesis. Journal of Applied Physiology, 2022, 132, 1091-1103.	2.5	3
2	Investigation of Brain Function-Related Myokine Secretion by Using Contractile 3D-Engineered Muscle. International Journal of Molecular Sciences, 2022, 23, 5723.	4.1	4
3	Effects of Maca on Muscle Hypertrophy in C2C12 Skeletal Muscle Cells. International Journal of Molecular Sciences, 2022, 23, 6825.	4.1	6
4	Cell and tissue system capable of automated culture, stimulation, and monitor with the aim of feedback control of organs-on-a-chip. Scientific Reports, 2021, 11, 2999.	3.3	7
5	Effect of very low-intensity resistance exercise with slow movement and tonic force generation on post-exercise inhibitory control. Heliyon, 2021, 7, e06261.	3.2	6
6	Effects of Fucoxanthin on the Inhibition of Dexamethasone-Induced Skeletal Muscle Loss in Mice. Nutrients, 2021, 13, 1079.	4.1	8
7	Caffeine increases myoglobin expression via the cyclic AMP pathway in L6 myotubes. Physiological Reports, 2021, 9, e14869.	1.7	7
8	Similar improvements in cognitive inhibitory control following low-intensity resistance exercise with slow movement and tonic force generation and high-intensity resistance exercise in healthy young adults: a preliminary study. Journal of Physiological Sciences, 2021, 71, 22.	2.1	6
9	Characteristics of the Passive Muscle Stiffness of the Vastus Lateralis: A Feasibility Study to Assess Muscle Fibrosis. International Journal of Environmental Research and Public Health, 2021, 18, 8947.	2.6	6
10	Effect of Exercise on Brain Health: The Potential Role of Lactate as a Myokine. Metabolites, 2021, 11, 813.	2.9	39
11	Impact of Inter-Set Short Rest Interval Length on Inhibitory Control Improvements Following Low-Intensity Resistance Exercise in Healthy Young Males. Frontiers in Physiology, 2021, 12, 741966.	2.8	3
12	Similar improvements in inhibitory control following low-volume high-intensity interval exercise and moderate-intensity continuous exercise. Psychology of Sport and Exercise, 2020, 51, 101791.	2.1	3
13	Effect of repeated bouts versus a single bout of moderateâ€intensity exercise on postexercise inhibitory control. Physiological Reports, 2020, 8, e14528.	1.7	7
14	Work volume is an important variable in determining the degree of inhibitory control improvements following resistance exercise. Physiological Reports, 2020, 8, e14527.	1.7	9
15	Dehydroepiandrosterone activates 5′-adenosine monophosphate-activated protein kinase and suppresses lipid accumulation and adipocyte differentiation in 3T3-L1 cells. Biochemical and Biophysical Research Communications, 2020, 528, 612-619.	2.1	6
16	Moderate hypoxia promotes skeletal muscle cell growth and hypertrophy in C2C12 cells. Biochemical and Biophysical Research Communications, 2020, 525, 921-927.	2.1	24
17	Fucoxanthinol attenuates oxidative stress-induced atrophy and loss in myotubes and reduces the triacylglycerol content in mature adipocytes. Molecular Biology Reports, 2020, 47, 2703-2711.	2.3	11
18	Effects of exogenous lactate administration on fat metabolism and glycogen synthesis factors in rats. Journal of Exercise Nutrition $\&$ Biochemistry, 2020, 24, 1-5.	1.3	6

#	Article	IF	Citations
19	The effect of eleutherococcus senticosus on metabolism-associated protein expression in 3T3-L1 and C2C12 cells. Physical Activity and Nutrition, 2020, 24, 13-18.	0.8	5
20	A lactate-based compound containing caffeine in addition to voluntary running exercise decreases subcutaneous fat mass and improves glucose metabolism in obese rats. Journal of Functional Foods, 2019, 56, 84-91.	3.4	11
21	Muscle Stiffness of the Vastus Lateralis in Sprinters and Long-Distance Runners. Medicine and Science in Sports and Exercise, 2019, 51, 2080-2087.	0.4	38
22	Maintained exerciseâ€enhanced brain executive function related to cerebral lactate metabolism in men. FASEB Journal, 2018, 32, 1417-1427.	0.5	91
23	Self-selected music-induced reduction of perceived exertion during moderate-intensity exercise does not interfere with post-exercise improvements in inhibitory control. Physiology and Behavior, 2018, 194, 170-176.	2.1	10
24	Flavanol-rich cocoa consumption enhances exercise-induced executive function improvements in humans. Nutrition, 2018, 46, 90-96.	2.4	18
25	Effect of Exercise Intensity and Duration on Postexercise Executive Function. Medicine and Science in Sports and Exercise, 2017, 49, 774-784.	0.4	48
26	An acute bout of localized resistance exercise can rapidly improve inhibitory control. PLoS ONE, 2017, 12, e0184075.	2.5	32
27	Repeated high-intensity interval exercise shortens the positive effect on executive function during post-exercise recovery in healthy young males. Physiology and Behavior, 2016, 160, 26-34.	2.1	55
28	Protective and therapeutic effects of fucoxanthin against sunburn caused by UV irradiation. Journal of Pharmacological Sciences, 2016, 132, 55-64.	2.5	53
29	Greater impact of acute high-intensity interval exercise on post-exercise executive function compared to moderate-intensity continuous exercise. Physiology and Behavior, 2016, 155, 224-230.	2.1	144
30	Dehydroepiandrosterone activates AMP kinase and regulates GLUT4 and PGC-1α expression in C2C12 myotubes. Biochemical and Biophysical Research Communications, 2015, 463, 42-47.	2.1	20
31	Mixed lactate and caffeine compound increases satellite cell activity and anabolic signals for muscle hypertrophy. Journal of Applied Physiology, 2015, 118, 742-749.	2.5	68
32	The effect of changes in cerebral blood flow on cognitive function during exercise. Physiological Reports, 2014, 2, e12163.	1.7	81
33	Exercise-inducible factors to activate lipolysis in adipocytes. Journal of Applied Physiology, 2013, 115, 260-267.	2.5	32
34	Active involvement of micro-lipid droplets and lipid-droplet-associated proteins in hormone-stimulated lipolysis in adipocytes. Journal of Cell Science, 2012, 125, 6127-6136.	2.0	60
35	Mitochondrial Lactate Oxidation Complex and an Adaptive Role for Lactate Production. Medicine and Science in Sports and Exercise, 2008, 40, 486-494.	0.4	127
36	Evidence for the Mitochondrial Lactate Oxidation Complex in Rat Neurons: Demonstration of an Essential Component of Brain Lactate Shuttles. PLoS ONE, 2008, 3, e2915.	2.5	157

#	Article	IF	CITATIONS
37	Lactate sensitive transcription factor network in L6 cells: activation of MCT1 and mitochondrial biogenesis. FASEB Journal, 2007, 21, 2602-2612.	0.5	351
38	Colocalization of MCT1, CD147, and LDH in mitochondrial inner membrane of L6 muscle cells: evidence of a mitochondrial lactate oxidation complex. American Journal of Physiology - Endocrinology and Metabolism, 2006, 290, E1237-E1244.	3 . 5	191
39	Evidence of a mitochondrial lactate oxidation complex at mitochondrial inner membrane in mammalian skeletal muscle cells. FASEB Journal, 2006, 20, A816.	0.5	0
40	Immunohistochemical analysis of MCT1, MCT2 and MCT4 expression in rat plantaris muscle. Journal of Physiology, 2005, 567, 121-129.	2.9	79
41	Hypoxia-Induced Adaptational Shift in MHC- \hat{l}^2 Isoform Expression in Rat Ventricles. The Japanese Journal of Physiology, 2005, 55, 109-115.	0.9	5
42	Myosin heavy chain isoforms expression and cyclic AMP concentrations in hypoxia-induced hypertrophied right ventricle in rats. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2004, 138, 365-370.	1.6	2
43	Expression of MHC-β and MCT1 in cardiac muscle after exercise training in myocardial-infarcted rats. Journal of Applied Physiology, 2004, 97, 843-851.	2.5	25
44	Alterations in the expression of myosin heavy chain isoforms in hypoxia-induced hypertrophied ventricles in rats. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2003, 136, 139-145.	1.6	11
45	Effects of Quercetin Glycoside Supplementation Combined With Low-Intensity Resistance Training on Muscle Quantity and Stiffness: A Randomized, Controlled Trial. Frontiers in Nutrition, 0, 9, .	3.7	4