A Paul Alivisatos

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/907260/a-paul-alivisatos-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

460 158 348 122,505 g-index h-index citations papers 12.8 8.66 130,287 497 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
460	The role of organic ligand shell structures in colloidal nanocrystal synthesis 2022 , 1, 127-137		10
459	Multiscale Characterization of the Influence of the Organic-Inorganic Interface on the Dielectric Breakdown of Nanocomposites ACS Nano, 2022 ,	16.7	1
458	Research Group-Led Undergraduate Research Program: Analyzing and Improving a Versatile Springboard for First-Year Undergraduates. <i>Journal of Chemical Education</i> , 2022 , 99, 799-809	2.4	O
457	Colloidal Synthesis Path to 2D Crystalline Quantum Dot Superlattices. ACS Nano, 2021, 15, 2251-2262	16.7	12
456	Anomalous nanoparticle surface diffusion in LCTEM is revealed by deep learning-assisted analysis. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	13
455	Dynamic lattice distortions driven by surface trapping in semiconductor nanocrystals. <i>Nature Communications</i> , 2021 , 12, 1860	17.4	10
454	Characterization of Carrier Cooling Bottleneck in Silicon Nanoparticles by Extreme Ultraviolet (XUV) Transient Absorption Spectroscopy. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 9319-9329	3.8	3
453	Single Particle Cathodoluminescence Spectroscopy with Sub-20 nm, Electron-Stable Phosphors. <i>ACS Photonics</i> , 2021 , 8, 1539-1547	6.3	1
452	Observation of ordered organic capping ligands on semiconducting quantum dots via powder X-ray diffraction. <i>Nature Communications</i> , 2021 , 12, 2663	17.4	6
451	Outdoor performance of a tandem InGaP/Si photovoltaic luminescent solar concentrator. <i>Solar Energy Materials and Solar Cells</i> , 2021 , 223, 110945	6.4	5
450	The chain of chirality transfer in tellurium nanocrystals. <i>Science</i> , 2021 , 372, 729-733	33.3	24
449	Elucidating the Role of Halides and Iron during Radiolysis-Driven Oxidative Etching of Gold Nanocrystals Using Liquid Cell Transmission Electron Microscopy and Pulse Radiolysis. <i>Journal of the American Chemical Society</i> , 2021 , 143, 11703-11713	16.4	2
448	In Situ Quantification of Interactions between Charged Nanorods in a Predefined Potential Energy Landscape. <i>Nano Letters</i> , 2021 , 21, 628-633	11.5	O
447	Uncovering the Role of Hole Traps in Promoting Hole Transfer from Multiexcitonic Quantum Dots to Molecular Acceptors. <i>ACS Nano</i> , 2021 , 15, 2281-2291	16.7	11
446	Multilayer Diffraction Reveals That Colloidal Superlattices Approach the Structural Perfection of Single Crystals. <i>ACS Nano</i> , 2021 , 15, 6243-6256	16.7	15
445	Single-Particle Studies Reveal a Nanoscale Mechanism for Elastic, Bright, and Repeatable ZnS:Mn Mechanoluminescence in a Low-Pressure Regime. <i>ACS Nano</i> , 2021 , 15, 4115-4133	16.7	8
444	Application of Dislocation Theory to Minimize Defects in Artificial Solids Built with Nanocrystal Building Blocks. <i>Accounts of Chemical Research</i> , 2021 , 54, 1419-1429	24.3	2

443	AutoDetect-mNP: An Unsupervised Machine Learning Algorithm for Automated Analysis of Transmission Electron Microscope Images of Metal Nanoparticles. <i>Jacs Au</i> , 2021 , 1, 316-327		16	
442	Redox Mediated Control of Electrochemical Potential in Liquid Cell Electron Microscopy. <i>Journal of the American Chemical Society</i> , 2021 , 143, 12082-12089	16.4	1	
441	Thermodynamics of Composition Dependent Ligand Exchange on the Surfaces of Colloidal Indium Phosphide Quantum Dots. <i>ACS Nano</i> , 2021 , 15, 1407-1420	16.7	11	
440	Self-Limiting Shell Formation in Cu@Ag Core-Shell Nanocrystals during Galvanic Replacement. Journal of Physical Chemistry Letters, 2020 , 11, 5318-5323	6.4	8	
439	Elucidating the Weakly Reversible Cs-Pb-Br Perovskite Nanocrystal Reaction Network with High-Throughput Maps and Transformations. <i>Journal of the American Chemical Society</i> , 2020 , 142, 1191	5 ¹⁶ 192	26 ²⁴	
438	Lead halide perovskite nanowires stabilized by block copolymers for Langmuir-Blodgett assembly. Nano Research, 2020 , 13, 1453-1458	10	16	
437	Critical differences in 3D atomic structure of individual ligand-protected nanocrystals in solution. <i>Science</i> , 2020 , 368, 60-67	33.3	56	
436	Sub-Bandgap Photoinduced Transient Absorption Features in CdSe Nanostructures: The Role of Trapped Holes. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 17372-17378	3.8	9	
435	Design and synthesis of multigrain nanocrystals via geometric misfit strain. <i>Nature</i> , 2020 , 577, 359-363	50.4	36	
434	Perovskite-Carbon Nanotube Light-Emitting Fibers. <i>Nano Letters</i> , 2020 , 20, 3178-3184	11.5	8	
433	Scaling Laws of Exciton Recombination Kinetics in Low Dimensional Halide Perovskite Nanostructures. <i>Journal of the American Chemical Society</i> , 2020 , 142, 8871-8879	16.4	12	
432	Thermodynamic Investigation of Increased Luminescence in Indium Phosphide Quantum Dots by Treatment with Metal Halide Salts. <i>Journal of the American Chemical Society</i> , 2020 , 142, 18897-18906	16.4	26	
431	Real-time observation of dynamic structure of liquid-vapor interface at nanometer resolution in electron irradiated sodium chloride crystals. <i>Scientific Reports</i> , 2020 , 10, 8596	4.9	2	
430	Precise Colloidal Plasmonic Photocatalysts Constructed by Multistep Photodepositions. <i>Nano Letters</i> , 2020 , 20, 8661-8667	11.5	9	
429	Tracking the Effects of Ligands on Oxidative Etching of Gold Nanorods in Graphene Liquid Cell Electron Microscopy. <i>ACS Nano</i> , 2020 , 14, 10239-10250	16.7	18	
428	Bright Infrared-to-Ultraviolet/Visible Upconversion in Small Alkaline Earth-Based Nanoparticles with Biocompatible CaF2 Shells. <i>Angewandte Chemie</i> , 2020 , 132, 21787-21796	3.6	3	
427	Bright Infrared-to-Ultraviolet/Visible Upconversion in Small Alkaline Earth-Based Nanoparticles with Biocompatible CaF Shells. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 21603-21612	16.4	15	
426	Nucleation, growth, and superlattice formation of nanocrystals observed in liquid cell transmission electron microscopy. <i>MRS Bulletin</i> , 2020 , 45, 713-726	3.2	8	

425	Translatable Research Group-Based Undergraduate Research Program for Lower-Division Students. Journal of Chemical Education, 2019 , 96, 1881-1890	2.4	5
424	The Underlying Chemical Mechanism of Selective Chemical Etching in CsPbBr Nanocrystals for Reliably Accessing Near-Unity Emitters. <i>ACS Nano</i> , 2019 , 13, 11825-11833	16.7	10
423	Ultrahigh Hot Carrier Transient Photocurrent in Nanocrystal Arrays by Auger Recombination. <i>Nano Letters</i> , 2019 , 19, 4804-4810	11.5	12
422	Perovskite nanowire-block copolymer composites with digitally programmable polarization anisotropy. <i>Science Advances</i> , 2019 , 5, eaav8141	14.3	64
421	Probing the Stability and Band Gaps of Cs2AgInCl6 and Cs2AgSbCl6 Lead-Free Double Perovskite Nanocrystals. <i>Chemistry of Materials</i> , 2019 , 31, 3134-3143	9.6	84
420	Small Alkaline-Earth-based Core/Shell Nanoparticles for Efficient Upconversion. <i>Nano Letters</i> , 2019 , 19, 3878-3885	11.5	42
419	Manipulating the Transition Dipole Moment of CsPbBr Perovskite Nanocrystals for Superior Optical Properties. <i>Nano Letters</i> , 2019 , 19, 2489-2496	11.5	39
418	Bright sub-20-nm cathodoluminescent nanoprobes for electron microscopy. <i>Nature Nanotechnology</i> , 2019 , 14, 420-425	28.7	21
417	Redefining near-unity luminescence in quantum dots with photothermal threshold quantum yield. <i>Science</i> , 2019 , 363, 1199-1202	33.3	120
416	Gold Nanocrystal Etching as a Means of Probing the Dynamic Chemical Environment in Graphene Liquid Cell Electron Microscopy. <i>Journal of the American Chemical Society</i> , 2019 , 141, 4428-4437	16.4	46
415	In Situ TEM Etching of Gold Nanocrystals: Elucidating the Shape Transformation Mechanisms and Chemistry of the Graphene Liquid Cell. <i>Microscopy and Microanalysis</i> , 2019 , 25, 1412-1413	0.5	O
414	Resilient Pathways to Atomic Attachment of Quantum Dot Dimers and Artificial Solids from Faceted CdSe Quantum Dot Building Blocks. <i>ACS Nano</i> , 2019 , 13, 12322-12344	16.7	20
413	Sub-20 nm Core-Shell-Shell Nanoparticles for Bright Upconversion and Enhanced Fister Resonant Energy Transfer. <i>Journal of the American Chemical Society</i> , 2019 , 141, 16997-17005	16.4	48
412	Factors and Dynamics of Cu Nanocrystal Reconstruction under CO2 Reduction. <i>ACS Applied Energy Materials</i> , 2019 , 2, 7744-7749	6.1	35
411	Real time imaging of two-dimensional iron oxide spherulite nanostructure formation. <i>Nano Research</i> , 2019 , 12, 2889-2893	10	4
410	Nanoscience IPotential and Threats 2019 , 9-46		
409	Unsaturated Ligands Seed an Order to Disorder Transition in Mixed Ligand Shells of CdSe/CdS Quantum Dots. <i>ACS Nano</i> , 2019 , 13, 13784-13796	16.7	21
408	Dynamics and Removal Pathway of Edge Dislocations in Imperfectly Attached PbTe Nanocrystal Pairs: Toward Design Rules for Oriented Attachment. <i>ACS Nano</i> , 2018 , 12, 3178-3189	16.7	34

(2018-2018)

407	Carbon Dioxide Dimer Radical Anion as Surface Intermediate of Photoinduced CO Reduction at Aqueous Cu and CdSe Nanoparticle Catalysts by Rapid-Scan FT-IR Spectroscopy. <i>Journal of the American Chemical Society</i> , 2018 , 140, 4363-4371	16.4	58
406	Strongly Quantum Confined Colloidal Cesium Tin Iodide Perovskite Nanoplates: Lessons for Reducing Defect Density and Improving Stability. <i>Nano Letters</i> , 2018 , 18, 2060-2066	11.5	96
405	Thermochromic halide perovskite solar cells. <i>Nature Materials</i> , 2018 , 17, 261-267	27	436
404	Hybrid Lithographic and DNA-Directed Assembly of a Configurable Plasmonic Metamaterial That Exhibits Electromagnetically Induced Transparency. <i>Nano Letters</i> , 2018 , 18, 859-864	11.5	16
403	The Making and Breaking of Lead-Free Double Perovskite Nanocrystals of Cesium Silver-Bismuth Halide Compositions. <i>Nano Letters</i> , 2018 , 18, 3502-3508	11.5	184
402	Improving Quantum Yield of Upconverting Nanoparticles in Aqueous Media via Emission Sensitization. <i>Nano Letters</i> , 2018 , 18, 2689-2695	11.5	53
401	Quantum Yields, Surface Quenching, and Passivation Efficiency for Ultrasmall Core/Shell Upconverting Nanoparticles. <i>Journal of the American Chemical Society</i> , 2018 , 140, 4922-4928	16.4	132
400	Bright, Mechanosensitive Upconversion with Cubic-Phase Heteroepitaxial Core-Shell Nanoparticles. <i>Nano Letters</i> , 2018 , 18, 4454-4459	11.5	38
399	Pseudoelasticity at Large Strains in Au Nanocrystals. <i>Physical Review Letters</i> , 2018 , 121, 056102	7.4	12
398	Photoexcited Small Polaron Formation in Goethite (FeOOH) Nanorods Probed by Transient Extreme Ultraviolet Spectroscopy. <i>Journal of Physical Chemistry Letters</i> , 2018 , 9, 4120-4124	6.4	13
397	Unraveling Kinetically-Driven Mechanisms of Gold Nanocrystal Shape Transformations Using Graphene Liquid Cell Electron Microscopy. <i>Nano Letters</i> , 2018 , 18, 5731-5737	11.5	47
396	Design Criteria for Micro-Optical Tandem Luminescent Solar Concentrators. <i>IEEE Journal of Photovoltaics</i> , 2018 , 8, 1560-1567	3.7	23
395	Tailoring Morphology of Cu-Ag Nanocrescents and Core-Shell Nanocrystals Guided by a Thermodynamic Model. <i>Journal of the American Chemical Society</i> , 2018 , 140, 8569-8577	16.4	41
394	Broadband Sensitization of Lanthanide Emission with Indium Phosphide Quantum Dots for Visible to Near-Infrared Downshifting. <i>Journal of the American Chemical Society</i> , 2018 , 140, 9120-9126	16.4	33
393	Dynamics and Removal Pathway of Edge Dislocations in Imperfectly Attached Nanocrystal Pairs; Towards Design Rules for Oriented Attachment. <i>Microscopy and Microanalysis</i> , 2018 , 24, 1656-1657	0.5	
392	Using Graphene Liquid Cell Electron Microscopy to Elucidate Nanocrystal Etching Mechanisms. <i>Microscopy and Microanalysis</i> , 2018 , 24, 246-247	0.5	
391	Design Principles for Trap-Free CsPbX Nanocrystals: Enumerating and Eliminating Surface Halide Vacancies with Softer Lewis Bases. <i>Journal of the American Chemical Society</i> , 2018 , 140, 17760-17772	16.4	291
390	Dynamics of Nanoscale Dendrite Formation in Solution Growth Revealed Through in Situ Liquid Cell Electron Microscopy. <i>Nano Letters</i> , 2018 , 18, 6427-6433	11.5	28

389 Introductory Perspectives. Advances in Electrochemical Science and Engineering, 2018, 1-6

388	Trap Passivation in Indium-Based Quantum Dots through Surface Fluorination: Mechanism and Applications. <i>ACS Nano</i> , 2018 , 12, 11529-11540	16.7	60
387	Using Graphene Liquid Cell Transmission Electron Microscopy to Study in Situ Nanocrystal Etching. Journal of Visualized Experiments, 2018 ,	1.6	26
386	Excitation Intensity Dependence of Photoluminescence Blinking in CsPbBr3 Perovskite Nanocrystals. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 12106-12113	3.8	45
385	Characterizing Photon Reabsorption in Quantum Dot-Polymer Composites for Use as Displacement Sensors. <i>ACS Nano</i> , 2017 , 11, 2075-2084	16.7	24
384	Tolerance to structural disorder and tunable mechanical behavior in self-assembled superlattices of polymer-grafted nanocrystals. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 2836-2841	11.5	47
383	Effect of Thermal Fluctuations on the Radiative Rate in Core/Shell Quantum Dots. <i>Nano Letters</i> , 2017 , 17, 1629-1636	11.5	21
382	Activation of Tungsten Oxide for Propane Dehydrogenation and Its High Catalytic Activity and Selectivity. <i>Catalysis Letters</i> , 2017 , 147, 622-632	2.8	29
381	A Comparison of Photocatalytic Activities of Gold Nanoparticles Following Plasmonic and Interband Excitation and a Strategy for Harnessing Interband Hot Carriers for Solution Phase Photocatalysis. <i>ACS Central Science</i> , 2017 , 3, 482-488	16.8	111
380	Dopant Mediated Assembly of CuZnSnS Nanorods into Atomically Coupled 2D Sheets in Solution. <i>Nano Letters</i> , 2017 , 17, 3421-3428	11.5	16
379	Essentially Trap-Free CsPbBr Colloidal Nanocrystals by Postsynthetic Thiocyanate Surface Treatment. <i>Journal of the American Chemical Society</i> , 2017 , 139, 6566-6569	16.4	531
378	Tunable Anisotropic Photon Emission from Self-Organized CsPbBr Perovskite Nanocrystals. <i>Nano Letters</i> , 2017 , 17, 4534-4540	11.5	49
377	Synthesis of PtY and Other Early-Late Intermetallic Nanoparticles by Way of a Molten Reducing Agent. <i>Journal of the American Chemical Society</i> , 2017 , 139, 5672-5675	16.4	50
376	Ligand Mediated Transformation of Cesium Lead Bromide Perovskite Nanocrystals to Lead Depleted CsPbBr Nanocrystals. <i>Journal of the American Chemical Society</i> , 2017 , 139, 5309-5312	16.4	301
375	The Use of Graphene and Its Derivatives for Liquid-Phase Transmission Electron Microscopy of Radiation-Sensitive Specimens. <i>Nano Letters</i> , 2017 , 17, 414-420	11.5	86
374	Micro-optical Tandem Luminescent Solar Concentrator 2017 ,		3
373	Mechanism of ion adsorption to aqueous interfaces: Graphene/water vs. air/water. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 13369-13373	11.5	55
372	Temperature-Dependent Hole Transfer from Photoexcited Quantum Dots to Molecular Species: Evidence for Trap-Mediated Transfer. <i>ACS Nano</i> , 2017 , 11, 8346-8355	16.7	33

(2016-2017)

371	Controlled Isotropic and Anisotropic Shell Growth in NaLnF Nanocrystals Induced by Precursor Injection Rate. <i>Journal of the American Chemical Society</i> , 2017 , 139, 12325-12332	16.4	67
370	Excitation-wavelength-dependent small polaron trapping of photoexcited carriers in FeO. <i>Nature Materials</i> , 2017 , 16, 819-825	27	125
369	Nanoscience [Potential and Threats. <i>Molecular Frontiers Journal</i> , 2017 , 01, 50-65	0.9	1
368	Tracking Nanoparticle Diffusion and Interaction during Self-Assembly in a Liquid Cell. <i>Nano Letters</i> , 2017 , 17, 15-20	11.5	65
367	Determining atomic coordinates in 3D by atomic electron tomography 2016 , 1-2		O
366	Mechanisms of Local Stress Sensing in Multifunctional Polymer Films Using Fluorescent Tetrapod Nanocrystals. <i>Nano Letters</i> , 2016 , 16, 5060-7	11.5	20
365	Single-particle mapping of nonequilibrium nanocrystal transformations. <i>Science</i> , 2016 , 354, 874-877	33.3	165
364	Three-dimensional structural dynamics and fluctuations of DNA-nanogold conjugates by individual-particle electron tomography. <i>Nature Communications</i> , 2016 , 7, 11083	17.4	27
363	Ultrasensitive photodetectors exploiting electrostatic trapping and percolation transport. <i>Nature Communications</i> , 2016 , 7, 11924	17.4	47
362	Atomic Resolution Imaging of Halide Perovskites. <i>Nano Letters</i> , 2016 , 16, 7530-7535	11.5	97
361	Roadmap on optical energy conversion. Journal of Optics (United Kingdom), 2016, 18, 073004	1.7	69
360	Solution-Processed, High-Speed, and High-Quantum-Efficiency Quantum Dot Infrared Photodetectors. <i>ACS Photonics</i> , 2016 , 3, 1217-1222	6.3	61
359	Hundreds-fold Sensitivity Enhancement of Photothermal Microscopy in Near-Critical Xenon. <i>Journal of Physical Chemistry Letters</i> , 2016 , 7, 2524-9	6.4	23
358	Real-Time Observation of Water-Soluble Mineral Precipitation in Aqueous Solution by In Situ High-Resolution Electron Microscopy. <i>ACS Nano</i> , 2016 , 10, 88-92	16.7	31
357	Cavitation-Induced Stiffness Reductions in Quantum Dot B olymer Nanocomposites. <i>Chemistry of Materials</i> , 2016 , 28, 2540-2549	9.6	20
356	Study of Heat Transfer Dynamics from Gold Nanorods to the Environment via Time-Resolved Infrared Spectroscopy. <i>ACS Nano</i> , 2016 , 10, 2144-51	16.7	89
355	Nanoscience in the era of global science and global changel Cooperative, quantitative, and focused on benefit to humanity. <i>Nano Research</i> , 2016 , 9, 1-2	10	60
354	Enhanced Photon Collection in Luminescent Solar Concentrators with Distributed Bragg Reflectors. <i>ACS Photonics</i> , 2016 , 3, 278-285	6.3	46

353	Encapsulation of Perovskite Nanocrystals into Macroscale Polymer Matrices: Enhanced Stability and Polarization. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 35523-35533	9.5	288
352	Understanding the Bias Introduced in Quantum Dot Blinking Using Change Point Analysis. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 29484-29490	3.8	12
351	Concentrator photovoltaic module architectures with capabilities for capture and conversion of full global solar radiation. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, E8210-E8218	11.5	33
350	Synthesis of Composition Tunable and Highly Luminescent Cesium Lead Halide Nanowires through Anion-Exchange Reactions. <i>Journal of the American Chemical Society</i> , 2016 , 138, 7236-9	16.4	327
349	A Mechanogenetic Toolkit for Interrogating Cell Signaling in Space and Time. <i>Cell</i> , 2016 , 165, 1507-1518	56.2	98
348	Surface- vs Diffusion-Limited Mechanisms of Anion Exchange in CsPbBr3 Nanocrystal Cubes Revealed through Kinetic Studies. <i>Journal of the American Chemical Society</i> , 2016 , 138, 12065-8	16.4	102
347	Ultrathin Colloidal Cesium Lead Halide Perovskite Nanowires. <i>Journal of the American Chemical Society</i> , 2016 , 138, 13155-13158	16.4	193
346	Spectroscopic elucidation of energy transfer in hybrid inorganic-biological organisms for solar-to-chemical production. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 11750-11755	11.5	81
345	Precise Tuning of Surface Quenching for Luminescence Enhancement in Core-Shell Lanthanide-Doped Nanocrystals. <i>Nano Letters</i> , 2016 , 16, 7241-7247	11.5	208
344	Insight into the Ligand-Mediated Synthesis of Colloidal CsPbBr3 Perovskite Nanocrystals: The Role of Organic Acid, Base, and Cesium Precursors. <i>ACS Nano</i> , 2016 , 10, 7943-54	16.7	541
343	Enhancing Quantum Yield via Local Symmetry Distortion in Lanthanide-Based Upconverting Nanoparticles. <i>ACS Photonics</i> , 2016 , 3, 1523-1530	6.3	57
342	Efficiency of hole transfer from photoexcited quantum dots to covalently linked molecular species. Journal of the American Chemical Society, 2015 , 137, 2021-9	16.4	107
341	Microfabricated liquid chamber utilizing solvent-drying for in-situ TEM imaging of nanoparticle self-assembly 2015 ,		1
340	Spiers Memorial Lecture. New tools for observing the growth and assembly of colloidal inorganic nanocrystals. <i>Faraday Discussions</i> , 2015 , 181, 15-8	3.6	2
339	Superresolution fluorescence mapping of single-nanoparticle catalysts reveals spatiotemporal variations in surface reactivity. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 8959-64	11.5	58
338	Nanoparticle imaging. 3D structure of individual nanocrystals in solution by electron microscopy. <i>Science</i> , 2015 , 349, 290-5	33.3	183
337	Dynamic Charge Carrier Trapping in Quantum Dot Field Effect Transistors. <i>Nano Letters</i> , 2015 , 15, 4657-	63 .5	30
336	Modular synthesis of a dual metal-dual semiconductor nano-heterostructure. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 7007-11	16.4	45

335	Interaction Potentials of Anisotropic Nanocrystals from the Trajectory Sampling of Particle Motion using in Situ Liquid Phase Transmission Electron Microscopy. <i>ACS Central Science</i> , 2015 , 1, 33-9	16.8	102
334	Synthesis, physics, and applications of ferroelectric nanomaterials. <i>MRS Communications</i> , 2015 , 5, 27-44	2.7	9
333	Charge percolation pathways guided by defects in quantum dot solids. <i>Nano Letters</i> , 2015 , 15, 3249-53	11.5	41
332	Molecular Oxygen Induced in-Gap States in PbS Quantum Dots. <i>ACS Nano</i> , 2015 , 9, 10445-52	16.7	43
331	Atomically thin two-dimensional organic-inorganic hybrid perovskites. <i>Science</i> , 2015 , 349, 1518-21	33.3	959
330	A National Network of Neurotechnology Centers for the BRAIN Initiative. <i>Neuron</i> , 2015 , 88, 445-8	13.9	12
329	Optical Rotation Reversal in the Optical Response of Chiral Plasmonic Nanosystems: The Role of Plasmon Hybridization. <i>ACS Photonics</i> , 2015 , 2, 1253-1259	6.3	48
328	Hole Transfer from Photoexcited Quantum Dots: The Relationship between Driving Force and Rate. Journal of the American Chemical Society, 2015 , 137, 15567-75	16.4	88
327	Circular Dichroism in Off-Resonantly Coupled Plasmonic Nanosystems. <i>Nano Letters</i> , 2015 , 15, 8336-41	11.5	35
326	Strain-dependent dynamic mechanical properties of Kevlar to failure: Structural correlations and comparisons to other polymers. <i>Materials Today Communications</i> , 2015 , 2, e33-e37	2.5	23
325	Modular Synthesis of a Dual Metal D ual Semiconductor Nano-Heterostructure. <i>Angewandte Chemie</i> , 2015 , 127, 7113-7117	3.6	5
324	Chemical Control of Plasmons in Metal Chalcogenide and Metal Oxide Nanostructures. <i>Advanced Materials</i> , 2015 , 27, 5830-7	24	82
323	Influence of three-dimensional nanoparticle branching on the Young's modulus of nanocomposites: Effect of interface orientation. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 6533-8	11.5	29
322	Reversible Aptamer-Au Plasmon Rulers for Secreted Single Molecules. <i>Nano Letters</i> , 2015 , 15, 4564-70	11.5	79
321	Silica-Supported Cationic Gold(I) Complexes as Heterogeneous Catalysts for Regio- and Enantioselective Lactonization Reactions. <i>Journal of the American Chemical Society</i> , 2015 , 137, 7083-6	16.4	86
320	Highly Luminescent Colloidal Nanoplates of Perovskite Cesium Lead Halide and Their Oriented Assemblies. <i>Journal of the American Chemical Society</i> , 2015 , 137, 16008-11	16.4	820
319	Structural diversity in binary superlattices self-assembled from polymer-grafted nanocrystals. <i>Nature Communications</i> , 2015 , 6, 10052	17.4	162
318	Quantum Dot Luminescent Concentrator Cavity Exhibiting 30-fold Concentration. <i>ACS Photonics</i> , 2015 , 2, 1576-1583	6.3	99

317	In Situ Transmission Electron Microscopy of Cadmium Selenide Nanorod Sublimation. <i>Journal of Physical Chemistry Letters</i> , 2015 , 6, 605-11	6.4	17
316	Inorganic micelles as efficient and recyclable micellar catalysts. <i>Nano Letters</i> , 2014 , 14, 379-83	11.5	42
315	Hydroxylation of the surface of PbS nanocrystals passivated with oleic acid. <i>Science</i> , 2014 , 344, 1380-4	33.3	333
314	Luminescent solar concentration with semiconductor nanorods and transfer-printed micro-silicon solar cells. <i>ACS Nano</i> , 2014 , 8, 44-53	16.7	128
313	Symmetry Breaking in Tetrahedral Chiral Plasmonic Nanoparticle Assemblies. <i>ACS Photonics</i> , 2014 , 1, 1189-1196	6.3	36
312	Enhanced electrochemical methanation of carbon dioxide with a dispersible nanoscale copper catalyst. <i>Journal of the American Chemical Society</i> , 2014 , 136, 13319-25	16.4	371
311	Ligand dissociation mediated charge transfer observed at colloidal W18O49 nanoparticle interfaces. <i>Langmuir</i> , 2014 , 30, 2325-8	4	9
310	Characterization of Photo-Induced Charge Transfer and Hot Carrier Relaxation Pathways in Spinel Cobalt Oxide (Co3O4). <i>Journal of Physical Chemistry C</i> , 2014 , 118, 22774-22784	3.8	60
309	Charge carrier dynamics of photoexcited Co3O4 in methanol: extending high harmonic transient absorption spectroscopy to liquid environments. <i>Nano Letters</i> , 2014 , 14, 5883-90	11.5	31
308	Dendritic assembly of gold nanoparticles during fuel-forming electrocatalysis. <i>Journal of the American Chemical Society</i> , 2014 , 136, 7237-40	16.4	81
307	Hole transfer dynamics from a CdSe/CdS quantum rod to a tethered ferrocene derivative. <i>Journal of the American Chemical Society</i> , 2014 , 136, 5121-31	16.4	76
306	PbS nanoparticles capped with tetrathiafulvalenetetracarboxylate: utilizing energy level alignment for efficient carrier transport. <i>ACS Nano</i> , 2014 , 8, 2532-40	16.7	37
305	Real-time visualization of nanocrystal solid-solid transformation pathways. <i>Nano Letters</i> , 2014 , 14, 1995	5 -9 1.5	22
304	Quantum Rods: Cadmium Selenide Anisotropy 2014 , 4116-4125		
303	Studies of the dynamics of biological macromolecules using Au nanoparticle-DNA artificial molecules. <i>Faraday Discussions</i> , 2014 , 175, 203-14	3.6	10
302	Phase-selective cation-exchange chemistry in sulfide nanowire systems. <i>Journal of the American Chemical Society</i> , 2014 , 136, 17430-3	16.4	75
301	Postsynthetic Doping Control of Nanocrystal Thin Films: Balancing Space Charge to Improve Photovoltaic Efficiency. <i>Chemistry of Materials</i> , 2014 , 26, 153-162	9.6	33
300	Nonmonotonic size dependence in the hole mobility of methoxide-stabilized PbSe quantum dot solids. <i>ACS Nano</i> , 2013 , 7, 6774-81	16.7	30

(2013-2013)

299	Luminescence studies of individual quantum dot photocatalysts. <i>Journal of the American Chemical Society</i> , 2013 , 135, 13049-53	16.4	58
298	Cation Exchange: A Versatile Tool for Nanomaterials Synthesis. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 19759-19770	3.8	343
297	3D motion of DNA-Au nanoconjugates in graphene liquid cell electron microscopy. <i>Nano Letters</i> , 2013 , 13, 4556-61	11.5	154
296	End-to-end alignment of nanorods in thin films. <i>Nano Letters</i> , 2013 , 13, 4908-13	11.5	64
295	Doped nanocrystals as plasmonic probes of redox chemistry. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 13671-5	16.4	103
294	Direct work function measurement by gas phase photoelectron spectroscopy and its application on PbS nanoparticles. <i>Nano Letters</i> , 2013 , 13, 6176-82	11.5	108
293	Size-dependent assemblies of nanoparticle mixtures in thin films. <i>Journal of the American Chemical Society</i> , 2013 , 135, 1680-3	16.4	66
292	Anisotropic formation and distribution of stacking faults in II-VI semiconductor nanorods. <i>Nano Letters</i> , 2013 , 13, 106-10	11.5	37
291	Accounting for Localized Defects in the Optoelectronic Design of Thin-Film Solar Cells. <i>IEEE Journal of Photovoltaics</i> , 2013 , 3, 599-604	3.7	15
290	Size-dependent dissociation of carbon monoxide on cobalt nanoparticles. <i>Journal of the American Chemical Society</i> , 2013 , 135, 2273-8	16.4	176
289	Selective Placement of Faceted Metal Tips on Semiconductor Nanorods. <i>Angewandte Chemie</i> , 2013 , 125, 1014-1016	3.6	5
288	Selective placement of faceted metal tips on semiconductor nanorods. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 980-2	16.4	37
287	Femtosecond M2,3-Edge Spectroscopy of Transition-Metal Oxides: Photoinduced Oxidation State Change in Fe2O3. <i>Journal of Physical Chemistry Letters</i> , 2013 , 4, 3667-3671	6.4	89
286	Controlling electron beam-induced structure modifications and cation exchange in cadmium sulfide-copper sulfide heterostructured nanorods. <i>Ultramicroscopy</i> , 2013 , 134, 207-13	3.1	11
285	Nanotools for neuroscience and brain activity mapping. ACS Nano, 2013, 7, 1850-66	16.7	248
284	Dealloying of Cobalt from CuCo Nanoparticles under Syngas Exposure. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 6259-6266	3.8	70
283	Neuroscience. The brain activity map. <i>Science</i> , 2013 , 339, 1284-5	33.3	147
282	Tetrapod nanocrystals as fluorescent stress probes of electrospun nanocomposites. <i>Nano Letters</i> , 2013 , 13, 3915-22	11.5	54

281	Ligand-Controlled Colloidal Synthesis and Electronic Structure Characterization of Cubic Iron Pyrite (FeS2) Nanocrystals. <i>Chemistry of Materials</i> , 2013 , 25, 1615-1620	9.6	64
2 80	Hexameric Octahedral Clusters of PbSe Nanocrystals Grown from Amorphous Lead(II) Carboxylate Nanoparticles. <i>Chemistry of Materials</i> , 2013 , 25, 2544-2548	9.6	9
279	Revealing bismuth oxide hollow nanoparticle formation by the Kirkendall effect. <i>Nano Letters</i> , 2013 , 13, 5715-9	11.5	137
278	Metastability in pressure-induced structural transformations of CdSe/ZnS core/shell nanocrystals. <i>Nano Letters</i> , 2013 , 13, 1367-72	11.5	42
277	Controlling localized surface plasmon resonances in GeTe nanoparticles using an amorphous-to-crystalline phase transition. <i>Physical Review Letters</i> , 2013 , 111, 037401	7.4	41
276	Toward plasmonics-enabled spatiotemporal activity patterns in three-dimensional culture models. <i>Systems Biomedicine (Austin, Tex.)</i> , 2013 , 1,		6
275	DNA conformations in mismatch repair probed in solution by X-ray scattering from gold nanocrystals. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 17308-13	11.5	45
274	Doped Nanocrystals as Plasmonic Probes of Redox Chemistry. <i>Angewandte Chemie</i> , 2013 , 125, 13916-1	3 92 60	13
273	Seeded synthesis of CdSe/CdS rod and tetrapod nanocrystals. <i>Journal of Visualized Experiments</i> , 2013 , e50731	1.6	6
272	Highly luminescent nanocrystals from removal of impurity atoms residual from ion-exchange synthesis. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 2387-90	16.4	60
271	Near-field manipulation of spectroscopic selection rules on the nanoscale. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 8016-9	11.5	82
270	Ion exchange synthesis of III-V nanocrystals. Journal of the American Chemical Society, 2012, 134, 19977	'-86 .4	120
269	Probing redox photocatalysis of trapped electrons and holes on single Sb-doped titania nanorod surfaces. <i>Journal of the American Chemical Society</i> , 2012 , 134, 3946-9	16.4	55
268	Direct observation of nanoparticle superlattice formation by using liquid cell transmission electron microscopy. <i>ACS Nano</i> , 2012 , 6, 2078-85	16.7	134
267	The brain activity map project and the challenge of functional connectomics. <i>Neuron</i> , 2012 , 74, 970-4	13.9	383
266	Controlled chemical doping of semiconductor nanocrystals using redox buffers. <i>Journal of the American Chemical Society</i> , 2012 , 134, 13200-3	16.4	37
265	Determination of the quantum dot band gap dependence on particle size from optical absorbance and transmission electron microscopy measurements. <i>ACS Nano</i> , 2012 , 6, 9021-32	16.7	105
264	Size-controlled model Co nanoparticle catalysts for COIhydrogenation: synthesis, characterization, and catalytic reactions. <i>Nano Letters</i> , 2012 , 12, 3091-6	11.5	148

(2011-2012)

263	Tunable localized surface plasmon resonances in tungsten oxide nanocrystals. <i>Journal of the American Chemical Society</i> , 2012 , 134, 3995-8	16.4	549
262	Metallic adhesion layer induced plasmon damping and molecular linker as a nondamping alternative. <i>ACS Nano</i> , 2012 , 6, 5702-9	16.7	156
261	Probing the interaction of single nanocrystals with inorganic capping ligands: time-resolved fluorescence from CdSe-CdS quantum dots capped with chalcogenidometalates. <i>Journal of the American Chemical Society</i> , 2012 , 134, 18366-73	16.4	40
260	High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. <i>Science</i> , 2012 , 336, 61-4	33.3	829
259	Dielectric core-shell optical antennas for strong solar absorption enhancement. <i>Nano Letters</i> , 2012 , 12, 3674-81	11.5	99
258	Triangular Elastomeric Stamps for Optical Applications: Near-Field Phase Shift Photolithography, 3D Proximity Field Patterning, Embossed Antireflective Coatings, and SERS Sensing. <i>Advanced Functional Materials</i> , 2012 , 22, 2927-2938	15.6	41
257	Highly Luminescent Nanocrystals From Removal of Impurity Atoms Residual From Ion-Exchange Synthesis. <i>Angewandte Chemie</i> , 2012 , 124, 2437-2440	3.6	10
256	Design of nanostructured solar cells using coupled optical and electrical modeling. <i>Nano Letters</i> , 2012 , 12, 2894-900	11.5	189
255	Ferroelectric order in individual nanometre-scale crystals. <i>Nature Materials</i> , 2012 , 11, 700-9	27	247
254	Graphene veils and sandwiches. <i>Nano Letters</i> , 2011 , 11, 3290-4	11.5	49
253	Size-dependent polar ordering in colloidal GeTe nanocrystals. <i>Nano Letters</i> , 2011 , 11, 1147-52	11.5	77
252	Three-dimensional plasmon rulers. <i>Science</i> , 2011 , 332, 1407-10	33.3	466
251	Assembled monolayer nanorod heterojunctions. ACS Nano, 2011, 5, 3811-6	16.7	98
250	Spatially indirect emission in a luminescent nanocrystal molecule. <i>Nano Letters</i> , 2011 , 11, 2358-62	11.5	55
249	Size Dependence of a Temperature-Induced SolidBolid Phase Transition in Copper(I) Sulfide. <i>Journal of Physical Chemistry Letters</i> , 2011 , 2, 2402-2406	6.4	102
248	Observations of shape-dependent hydrogen uptake trajectories from single nanocrystals. <i>Journal of the American Chemical Society</i> , 2011 , 133, 13220-3	16.4	105
247	Localized surface plasmon resonances arising from free carriers in doped quantum dots. <i>Nature Materials</i> , 2011 , 10, 361-6	27	1283
246	Nanoantenna-enhanced gas sensing in a single tailored nanofocus. <i>Nature Materials</i> , 2011 , 10, 631-6	27	753

245	Photovoltaic performance of ultrasmall PbSe quantum dots. ACS Nano, 2011, 5, 8140-7	16.7	185
244	Controlled synthesis and size-dependent polarization domain structure of colloidal germanium telluride nanocrystals. <i>Journal of the American Chemical Society</i> , 2011 , 133, 2044-7	16.4	46
243	Observation of transient structural-transformation dynamics in a Cu2S nanorod. <i>Science</i> , 2011 , 333, 206	-9 3.3	202
242	Structural and Electronic Study of an Amorphous MoS3 Hydrogen-Generation Catalyst on a Quantum-Controlled Photosensitizer. <i>Angewandte Chemie</i> , 2011 , 123, 10385-10389	3.6	47
241	Structural and electronic study of an amorphous MoS3 hydrogen-generation catalyst on a quantum-controlled photosensitizer. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 10203-7	16.4	147
240	Self-assembly of magnetic nanoparticles in evaporating solution. <i>Journal of the American Chemical Society</i> , 2011 , 133, 838-48	16.4	73
239	Modular small-molecule directed nanoparticle assembly 2010,		1
238	Luminescent nanocrystal stress gauge. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 21306-10	11.5	50
237	Nanoheterostructure cation exchange: anionic framework conservation. <i>Journal of the American Chemical Society</i> , 2010 , 132, 9997-9	16.4	236
236	Precursor conversion kinetics and the nucleation of cadmium selenide nanocrystals. <i>Journal of the American Chemical Society</i> , 2010 , 132, 18206-13	16.4	194
235	Device-scale perpendicular alignment of colloidal nanorods. <i>Nano Letters</i> , 2010 , 10, 195-201	11.5	223
234	Photocatalytic Hydrogen Production with Tunable Nanorod Heterostructures. <i>Journal of Physical Chemistry Letters</i> , 2010 , 1, 1051-1054	6.4	523
233	Quantification of thin film crystallographic orientation using X-ray diffraction with an area detector. <i>Langmuir</i> , 2010 , 26, 9146-51	4	262
232	Transition from isolated to collective modes in plasmonic oligomers. <i>Nano Letters</i> , 2010 , 10, 2721-6	11.5	483
231	Direct measurement of the built-in potential in a nanoscale heterostructure. <i>Physical Review B</i> , 2010 , 82,	3.3	7
230	Coupling of optical resonances in a compositionally asymmetric plasmonic nanoparticle dimer. <i>Nano Letters</i> , 2010 , 10, 2655-60	11.5	305
229	From artificial atoms to nanocrystal molecules: preparation and properties of more complex nanostructures. <i>Annual Review of Physical Chemistry</i> , 2010 , 61, 369-89	15.7	156
228	Exciton Dynamics in CdSAg2S Nanorods with Tunable Composition Probed by Ultrafast Transient Absorption Spectroscopy. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 5879-5885	3.8	45

227	. IEEE Journal of Selected Topics in Quantum Electronics, 2010 , 16, 295-306	3.8	113
226	Modular inorganic nanocomposites by conversion of nanocrystal superlattices. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 2878-82	16.4	59
225	Continuous imaging of plasmon rulers in live cells reveals early-stage caspase-3 activation at the single-molecule level. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 17735-40	11.5	173
224	Small-molecule-directed nanoparticle assembly towards stimuli-responsive nanocomposites. <i>Nature Materials</i> , 2009 , 8, 979-85	27	392
223	Reactivity of Au nanoparticles supported over SiO2 and TiO2 studied by ambient pressure photoelectron spectroscopy. <i>Catalysis Today</i> , 2009 , 143, 158-166	5.3	41
222	Enhanced semiconductor nanocrystal conductance via solution grown contacts. <i>Nano Letters</i> , 2009 , 9, 3676-82	11.5	120
221	Pyramidal and chiral groupings of gold nanocrystals assembled using DNA scaffolds. <i>Journal of the American Chemical Society</i> , 2009 , 131, 8455-9	16.4	420
220	Observation of single colloidal platinum nanocrystal growth trajectories. <i>Science</i> , 2009 , 324, 1309-12	33.3	1050
219	Synthesis of PbS nanorods and other ionic nanocrystals of complex morphology by sequential cation exchange reactions. <i>Journal of the American Chemical Society</i> , 2009 , 131, 16851-7	16.4	309
218	Selective facet reactivity during cation exchange in cadmium sulfide nanorods. <i>Journal of the American Chemical Society</i> , 2009 , 131, 5285-93	16.4	336
217	Probing the conformational distributions of subpersistence length DNA. <i>Biophysical Journal</i> , 2009 , 97, 1408-17	2.9	74
216	Photovoltaic devices employing ternary PbSxSe1-x nanocrystals. <i>Nano Letters</i> , 2009 , 9, 1699-703	11.5	401
215	Strain-dependent photoluminescence behavior of CdSe/CdS nanocrystals with spherical, linear, and branched topologies. <i>Nano Letters</i> , 2009 , 9, 3544-9	11.5	111
214	Wurtzite to rocksalt phase transformation of cadmium selenide nanocrystals via laser-induced shock waves: transition from single to multiple nucleation. <i>Physical Review Letters</i> , 2009 , 103, 125701	7.4	16
213	Materials availability expands the opportunity for large-scale photovoltaics deployment. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	907
212	Hetero-epitaxial anion exchange yields single-crystalline hollow nanoparticles. <i>Journal of the American Chemical Society</i> , 2009 , 131, 13943-5	16.4	201
211	Nanocrystal diffusion in a liquid thin film observed by in situ transmission electron microscopy. <i>Nano Letters</i> , 2009 , 9, 2460-5	11.5	238
21 0	Surfactant-Assisted Hydrothermal Synthesis of Single phase Pyrite FeS2 Nanocrystals. <i>Chemistry of Materials</i> , 2009 , 21, 2568-2570	9.6	181

209	Reaction regimes on the synthesis of hollow particles by the Kirkendall effect. <i>Journal of the American Chemical Society</i> , 2009 , 131, 11326-8	16.4	94
208	Magnetic domains and surface effects in hollow maghemite nanoparticles. <i>Physical Review B</i> , 2009 , 79,	3.3	100
207	How does solar power work?. Scientific American, 2009, 300, 108	0.5	
206	Ultrahigh stress and strain in hierarchically structured hollow nanoparticles. <i>Nature Materials</i> , 2008 , 7, 947-52	27	177
205	Sulfidation of cadmium at the nanoscale. ACS Nano, 2008, 2, 1452-8	16.7	106
204	Birth of a nanoscience building block. <i>ACS Nano</i> , 2008 , 2, 1514-6	16.7	36
203	Metallic nanoparticles used to estimate the structural integrity of DNA motifs. <i>Biophysical Journal</i> , 2008 , 95, 3340-8	2.9	13
202	Reaction chemistry and ligand exchange at cadmium-selenide nanocrystal surfaces. <i>Journal of the American Chemical Society</i> , 2008 , 130, 12279-81	16.4	316
201	TiO2 nanoparticles as a soft X-ray molecular probe. Chemical Communications, 2008, 2471-3	5.8	31
200	Electrical contacts to individual colloidal semiconductor nanorods. <i>Nano Letters</i> , 2008 , 8, 1936-9	11.5	39
199	Enzymatic ligation creates discrete multinanoparticle building blocks for self-assembly. <i>Journal of the American Chemical Society</i> , 2008 , 130, 9598-605	16.4	80
198	Correlation analysis of TEM images of nanocrystal molecules. <i>Langmuir</i> , 2008 , 24, 10084-8	4	6
197	Formation mechanism and properties of CdS-Ag2S nanorod superlattices. ACS Nano, 2008, 2, 627-36	16.7	82
196	Self-assembled binary superlattices of CdSe and Au nanocrystals and their fluorescence properties. Journal of the American Chemical Society, 2008 , 130, 3274-5	16.4	183
195	Isolation of discrete nanoparticle-DNA conjugates for plasmonic applications. <i>Nano Letters</i> , 2008 , 8, 12	0 2-6 5	147
194	Protein-nanocrystal conjugates support a single filament polymerization model in R1 plasmid segregation. <i>Journal of Biological Chemistry</i> , 2008 , 283, 28081-6	5.4	15
193	Gold/Iron Oxide Core/Hollow-Shell Nanoparticles. <i>Advanced Materials</i> , 2008 , 20, 4323-4329	24	284
192	Photodeposition of Pt on Colloidal CdS and CdSe/CdS Semiconductor Nanostructures. <i>Advanced Materials</i> , 2008 , 20, 4306-4311	24	177

Synthesis and photovoltaic application of copper(I) sulfide nanocrystals. Nano Letters, 2008, 8, 2551-5 11.5 191 587 Cadmium Selenide Quantum Rods 2008, 487-497 190 Millisecond kinetics of nanocrystal cation exchange using microfluidic X-ray absorption 189 2.8 93 spectroscopy. Journal of Physical Chemistry A, 2007, 111, 12210-5 Electronic Structure of Cobalt Nanocrystals Suspended in Liquid. Nano Letters, 2007, 7, 1919-1922 188 11.5 74 Semiconductor quantum rods as single molecule fluorescent biological labels. Nano Letters, 2007, 187 11.5 170 7.179-82 IR spectroscopic observation of molecular transport through Pt@CoO yolk-shell nanostructures. 186 16.4 69 Journal of the American Chemical Society, 2007, 129, 9510-3 Vacancy coalescence during oxidation of iron nanoparticles. Journal of the American Chemical 185 16.4 270 Society, 2007, 129, 10358-60 Measuring cell motility using quantum dot probes. Methods in Molecular Biology, 2007, 374, 125-31 184 12 1.4 Mechanical and electrical properties of CdTe tetrapods studied by atomic force microscopy. Journal 183 58 3.9 of Chemical Physics, 2007, 127, 184704 Use of plasmon coupling to reveal the dynamics of DNA bending and cleavage by single EcoRV 182 restriction enzymes. Proceedings of the National Academy of Sciences of the United States of America 246 11.5 , **2007**, 104, 2667-72 Mechanistic study of precursor evolution in colloidal group II-VI semiconductor nanocrystal 181 346 16.4 synthesis. Journal of the American Chemical Society, 2007, 129, 305-12 Surface Structure of CdSe Nanorods Revealed by Combined X-ray Absorption Fine Structure 180 3.8 19 Measurements and ab Initio Calculations. Journal of Physical Chemistry C, 2007, 111, 75-79 SnTe nanocrystals: a new example of narrow-gap semiconductor quantum dots. Journal of the 16.4 146 179 American Chemical Society, **2007**, 129, 11354-5 Spontaneous superlattice formation in nanorods through partial cation exchange. Science, 2007, 178 632 33.3 317, 355-8 Optical properties of ZnO/ZnS and ZnO/ZnTe heterostructures for photovoltaic applications. Nano 177 11.5 371 Letters, 2007, 7, 2377-82 Hybrid solar cells with prescribed nanoscale morphologies based on hyperbranched semiconductor 176 430 11.5 nanocrystals. Nano Letters, 2007, 7, 409-14 Seeded growth of highly luminescent CdSe/CdS nanoheterostructures with rod and tetrapod 663 175 11.5 morphologies. Nano Letters, 2007, 7, 2951-9 Colloidal Synthesis of Hollow Cobalt Sulfide Nanocrystals. Advanced Functional Materials, 2006, 16, 138915399 337 174

173	Continuous distribution of emission states from single CdSe/ZnS quantum dots. <i>Nano Letters</i> , 2006 , 6, 843-7	11.5	214
172	Cellular effect of high doses of silica-coated quantum dot profiled with high throughput gene expression analysis and high content cellomics measurements. <i>Nano Letters</i> , 2006 , 6, 800-8	11.5	307
171	Crystal splitting in the growth of Bi2S3. <i>Nano Letters</i> , 2006 , 6, 2701-6	11.5	299
170	Electric-field-assisted assembly of perpendicularly oriented nanorod superlattices. <i>Nano Letters</i> , 2006 , 6, 1479-82	11.5	333
169	Controlled assembly of hybrid bulk-heterojunction solar cells by sequential deposition. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 25543-6	3.4	72
168	Two-dimensional nanoparticle arrays show the organizational power of robust DNA motifs. <i>Nano Letters</i> , 2006 , 6, 1502-4	11.5	385
167	Second harmonic generation and confined acoustic phonons in highly excited semiconductor nanocrystals. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 19884-90	3.4	38
166	Faceting of nanocrystals during chemical transformation: from solid silver spheres to hollow gold octahedra. <i>Journal of the American Chemical Society</i> , 2006 , 128, 12671-3	16.4	241
165	The concept of delayed nucleation in nanocrystal growth demonstrated for the case of iron oxide nanodisks. <i>Journal of the American Chemical Society</i> , 2006 , 128, 1675-82	16.4	221
164	A nanoplasmonic molecular ruler for measuring nuclease activity and DNA footprinting. <i>Nature Nanotechnology</i> , 2006 , 1, 47-52	28.7	247
163	Strain and deformation in ultra-hard nanocomposites nc-TiN/a-BN under hydrostatic pressure. <i>Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2006 , 437, 379-387	5.3	33
162	Electrical transport through a single nanoscale semiconductor branch point. <i>Nano Letters</i> , 2005 , 5, 1519	- 2 - 3 .5	119
161	Semiconductor nanocrystal quantum dots on single crystal semiconductor substrates: high resolution transmission electron microscopy. <i>Nano Letters</i> , 2005 , 5, 969-73	11.5	22
160	First-principles modeling of unpassivated and surfactant-passivated bulk facets of wurtzite CdSe: a model system for studying the anisotropic growth of CdSe nanocrystals. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 6183-92	3.4	260
159	Air-stable all-inorganic nanocrystal solar cells processed from solution. <i>Science</i> , 2005 , 310, 462-5	33.3	1531
158	Integrated semiconductor nanocrystal and epitaxical nanostructure systems: structural and optical behavior. <i>Nano Letters</i> , 2005 , 5, 479-82	11.5	22
157	Calibration of dynamic molecular rulers based on plasmon coupling between gold nanoparticles. <i>Nano Letters</i> , 2005 , 5, 2246-52	11.5	498
156	High-temperature microfluidic synthesis of CdSe nanocrystals in nanoliter droplets. <i>Journal of the American Chemical Society</i> , 2005 , 127, 13854-61	16.4	316

(2004-2005)

155	Directed Assembly of Discrete Gold Nanoparticle Groupings Using Branched DNA Scaffolds. <i>Chemistry of Materials</i> , 2005 , 17, 1628-1635	9.6	134
154	Size dependence of the pressure-induced Ito Btructural phase transition in iron oxide nanocrystals. <i>Nanotechnology</i> , 2005 , 16, 2813-2818	3.4	44
153	Hybrid Organic-Nanocrystal Solar Cells. MRS Bulletin, 2005, 30, 41-44	3.2	225
152	Controlled synthesis of hyperbranched inorganic nanocrystals with rich three-dimensional structures. <i>Nano Letters</i> , 2005 , 5, 2164-7	11.5	195
151	Femtosecond spectroscopy of carrier relaxation dynamics in type II CdSe/CdTe tetrapod heteronanostructures. <i>Nano Letters</i> , 2005 , 5, 1809-13	11.5	134
150	Gold nanorods as novel nonbleaching plasmon-based orientation sensors for polarized single-particle microscopy. <i>Nano Letters</i> , 2005 , 5, 301-4	11.5	418
149	Quantum dots as cellular probes. Annual Review of Biomedical Engineering, 2005, 7, 55-76	12	1170
148	A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. <i>Nature Biotechnology</i> , 2005 , 23, 741-5	44.5	1300
147	Colloidal nanocrystal synthesis and the organic-inorganic interface. <i>Nature</i> , 2005 , 437, 664-70	50.4	2739
146	Semiconductor nanocrystals for biological imaging. <i>Current Opinion in Neurobiology</i> , 2005 , 15, 568-75	7.6	153
145	Cation Exchange Reactions in Ionic Nanocrystals ChemInform, 2005, 36, no		5
144	A beamline for high-pressure studies at the Advanced Light Source with a superconducting bending magnet as the source. <i>Journal of Synchrotron Radiation</i> , 2005 , 12, 650-8	2.4	113
143	Quantum-dot-based cell motility assay. Science Signaling, 2005, 2005, pl5	8.8	6
142	Lithographically directed self-assembly of nanostructures. <i>Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena</i> , 2004 , 22, 3409		84
141	Isotropic-liquid crystalline phase diagram of a CdSe nanorod solution. <i>Journal of Chemical Physics</i> , 2004 , 120, 1149-52	3.9	45
140	The use of nanocrystals in biological detection. <i>Nature Biotechnology</i> , 2004 , 22, 47-52	44.5	2626
139	Collective behaviour in two-dimensional cobalt nanoparticle assemblies observed by magnetic force microscopy. <i>Nature Materials</i> , 2004 , 3, 263-8	27	270
138	Colloidal nanocrystal heterostructures with linear and branched topology. <i>Nature</i> , 2004 , 430, 190-5	50.4	1064

137	Cation exchange reactions in ionic nanocrystals. <i>Science</i> , 2004 , 306, 1009-12	33.3	1016
136	The Effect of Organic Ligand Binding on the Growth of CdSe Nanoparticles Probed by Ab Initio Calculations. <i>Nano Letters</i> , 2004 , 4, 2361-2365	11.5	285
135	Critical Size for Fracture during SolidBolid Phase Transformations. <i>Nano Letters</i> , 2004 , 4, 943-946	11.5	51
134	Preparation of Asymmetric Nanostructures through Site Selective Modification of Tetrapods. <i>Nano Letters</i> , 2004 , 4, 2397-2401	11.5	71
133	Integration of Colloidal Nanocrystals into Lithographically Patterned Devices. Nano Letters, 2004, 4, 109	93:1199	8473
132	Discrete nanostructures of quantum dots/Au with DNA. <i>Journal of the American Chemical Society</i> , 2004 , 126, 10832-3	16.4	227
131	Employing end-functional polythiophene to control the morphology of nanocrystal-polymer composites in hybrid solar cells. <i>Journal of the American Chemical Society</i> , 2004 , 126, 6550-1	16.4	423
130	Multielectron ionization of CdSe quantum dots in intense femtosecond ultraviolet light. <i>Physical Review Letters</i> , 2004 , 92, 127406	7.4	24
129	Formation of hollow nanocrystals through the nanoscale Kirkendall effect. <i>Science</i> , 2004 , 304, 711-4	33.3	2984
128	Integration of nanocrystal quantum dots with crystalline semiconductor substrates: Structure, Stability, and Optical response. <i>Materials Research Society Symposia Proceedings</i> , 2004 , 854, U4.7.1		
127	Size-Controlled Growth of CdSe Nanocrystals in Microfluidic Reactors. <i>Nano Letters</i> , 2003 , 3, 199-201	11.5	296
126	Synthetic Insertion of Gold Nanoparticles into Mesoporous Silica. <i>Chemistry of Materials</i> , 2003 , 15, 1242	2-9248	157
125	Quantum dot-based cell motility assay. <i>Differentiation</i> , 2003 , 71, 542-8	3.5	68
124	Controlling the Morphology of Nanocrystal P olymer Composites for Solar Cells. <i>Advanced Functional Materials</i> , 2003 , 13, 73-79	15.6	405
123	Electroactive Surfactant Designed to Mediate Electron Transfer Between CdSe Nanocrystals and Organic Semiconductors. <i>Advanced Materials</i> , 2003 , 15, 58-61	24	188
122	Semiconductor Nanorod Liquid Crystals and Their Assembly on a Substrate. <i>Advanced Materials</i> , 2003 , 15, 408-411	24	203
121	Controlled growth of tetrapod-branched inorganic nanocrystals. <i>Nature Materials</i> , 2003 , 2, 382-5	27	1290
120	Biological applications of colloidal nanocrystals. <i>Nanotechnology</i> , 2003 , 14, R15-R27	3.4	626

(2002-2003)

119	Synthesis and characterization of hyperbranched mesoporous silica SBA-15. <i>Chemical Communications</i> , 2003 , 314-5	5.8	26
118	Surfactant-assisted elimination of a high energy facet as a means of controlling the shapes of TiO2 nanocrystals. <i>Journal of the American Chemical Society</i> , 2003 , 125, 15981-5	16.4	514
117	Shape control and applications of nanocrystals. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2003 , 361, 241-55; discussion 56-7	3	172
116	Conformation of Oligonucleotides Attached to Gold Nanocrystals Probed by Gel Electrophoresis. <i>Nano Letters</i> , 2003 , 3, 33-36	11.5	292
115	Origin and scaling of the permanent dipole moment in CdSe nanorods. <i>Physical Review Letters</i> , 2003 , 90, 097402	7.4	177
114	Charge transport in hybrid nanorod-polymer composite photovoltaic cells. <i>Physical Review B</i> , 2003 , 67,	3.3	237
113	Encapsulation of Metal (Au, Ag, Pt) Nanoparticles into the Mesoporous SBA-15 Structure. <i>Langmuir</i> , 2003 , 19, 4396-4401	4	154
112	Room-temperature single-nucleotide polymorphism and multiallele DNA detection using fluorescent nanocrystals and microarrays. <i>Analytical Chemistry</i> , 2003 , 75, 4766-72	7.8	274
111	Cell Motility and Metastatic Potential Studies Based on Quantum Dot Imaging of Phagokinetic Tracks. <i>Advanced Materials</i> , 2002 , 14, 882	24	332
110	Hybrid nanorod-polymer solar cells. <i>Science</i> , 2002 , 295, 2425-7	33.3	4518
109	Synthesis of Colloidal Cobalt Nanoparticles with Controlled Size and Shapes. <i>Topics in Catalysis</i> , 2002 , 19, 145-148	2.3	76
108	Novel Two-Step Synthesis of Controlled Size and Shape Platinum Nanoparticles Encapsulated in Mesoporous Silica. <i>Catalysis Letters</i> , 2002 , 81, 137-140	2.8	70
107	Shape Control of Colloidal Semiconductor Nanocrystals. <i>Journal of Cluster Science</i> , 2002 , 13, 521-532	3	127
106	Electron (hole) paramagnetic resonance of spherical CdSe nanocrystals. <i>Journal of Chemical Physics</i> , 2002 , 117, 2909-2913	3.9	12
105	Soft x-ray imaging and spectroscopy of single nanocrystals. <i>Journal of Chemical Physics</i> , 2002 , 116, 6322	2- <u>6</u> .3 ₉ 28	19
104	Designed for Charge Transfer: Complexes of CdSe Nanocrystals and Oligothiophenes. <i>Materials Research Society Symposia Proceedings</i> , 2002 , 725, 1		
103	Mechanisms of Controlled Growth Of Metallic Nanocrystals. <i>Materials Research Society Symposia Proceedings</i> , 2002 , 721, 1		
102	Sorting fluorescent nanocrystals with DNA. <i>Journal of the American Chemical Society</i> , 2002 , 124, 7070-4	16.4	263

101	Semiempirical Pseudopotential Calculation of Electronic States of CdSe Quantum Rods. <i>Journal of Physical Chemistry B</i> , 2002 , 106, 2447-2452	3.4	99
100	Epitaxial growth and photochemical annealing of graded CdS/ZnS shells on colloidal CdSe nanorods. <i>Journal of the American Chemical Society</i> , 2002 , 124, 7136-45	16.4	513
99	Molecular Weight, Osmotic Second Virial Coefficient, and Extinction Coefficient of Colloidal CdSe Nanocrystals. <i>Journal of Physical Chemistry B</i> , 2002 , 106, 5500-5505	3.4	117
98	Threshold Size for Ambient Metastability of Rocksalt CdSe Nanocrystals. <i>Journal of Physical Chemistry B</i> , 2002 , 106, 3759-3762	3.4	66
97	Conjugation of DNA to Silanized Colloidal Semiconductor Nanocrystalline Quantum Dots. <i>Chemistry of Materials</i> , 2002 , 14, 2113-2119	9.6	274
96	Semiconductor Nanorod Liquid Crystals. <i>Nano Letters</i> , 2002 , 2, 557-560	11.5	274
95	Nanocrystal Templating of Silica Mesopores with Tunable Pore Sizes. <i>Nano Letters</i> , 2002 , 2, 907-910	11.5	81
94	Synthesis of hcp-Co Nanodisks. <i>Journal of the American Chemical Society</i> , 2002 , 124, 12874-80	16.4	595
93	Electrophoretic and Structural Studies of DNA-Directed Au Nanoparticle Groupings. <i>Journal of Physical Chemistry B</i> , 2002 , 106, 11758-11763	3.4	190
92	Ultrahigh-resolution multicolor colocalization of single fluorescent nanocrystals. <i>Proceedings of SPIE</i> , 2001 , 4258,	1.7	3
91	Properties of Fluorescent Semiconductor Nanocrystals and their Application to Biological Labeling. <i>Single Molecules</i> , 2001 , 2, 261-276		335
90	Nanocrystals as Model Systems for Pressure-Induced Structural Phase Transitions. <i>Reviews in Mineralogy and Geochemistry</i> , 2001 , 44, 59-72	7.1	9
89	Band Gap Variation of Size- and Shape-Controlled Colloidal CdSe Quantum Rods. <i>Nano Letters</i> , 2001 , 1, 349-351	11.5	542
88	Less is more in medicine. <i>Scientific American</i> , 2001 , 285, 66-73	0.5	119
87	Synthesis, self-assembly, and magnetic behavior of a two-dimensional superlattice of single-crystal ©co nanoparticles. <i>Applied Physics Letters</i> , 2001 , 78, 2187-2189	3.4	282
86	Electrophoretic Isolation of Discrete Au Nanocrystal/DNA Conjugates. <i>Nano Letters</i> , 2001 , 1, 32-35	11.5	419
85	Synthesis and Properties of Biocompatible Water-Soluble Silica-Coated CdSe/ZnS Semiconductor Quantum Dots Journal of Physical Chemistry B, 2001 , 105, 8861-8871	3.4	1128
84	Time-gated biological imaging by use of colloidal quantum dots. <i>Optics Letters</i> , 2001 , 26, 825-7	3	286

83	Linearly polarized emission from colloidal semiconductor quantum rods. <i>Science</i> , 2001 , 292, 2060-3	33.3	1026
82	Activation volumes for solid-solid transformations in nanocrystals. <i>Science</i> , 2001 , 293, 1803-6	33.3	218
81	Colloidal Nanocrystal Shape and Size Control: The Case of Cobalt. <i>Science</i> , 2001 , 291, 2115-2117	33.3	393
80	Properties of Fluorescent Semiconductor Nanocrystals and their Application to Biological Labeling 2001 , 2, 261		2
79	Shape control of CdSe nanocrystals. <i>Nature</i> , 2000 , 404, 59-61	50.4	3891
78	Nanomechanical oscillations in a single-C60 transistor. <i>Nature</i> , 2000 , 407, 57-60	50.4	1530
77	Photon antibunching in single CdSe/ZnS quantum dot fluorescence. <i>Chemical Physics Letters</i> , 2000 , 329, 399-404	2.5	255
76	Ultrahigh-resolution multicolor colocalization of single fluorescent probes. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2000 , 97, 9461-6	11.5	281
75	Colloidal quantum dots. From scaling laws to biological applications. <i>Pure and Applied Chemistry</i> , 2000 , 72, 3-9	2.1	98
74	Shape change as an indicator of mechanism in the high-pressure structural transformations of CdSe nanocrystals. <i>Physical Review Letters</i> , 2000 , 84, 923-6	7.4	167
73	Biomineralization. Naturally aligned nanocrystals. <i>Science</i> , 2000 , 289, 736-7	33.3	393
72	Observation of pressure-induced direct-to-indirect band gap transition in InP nanocrystals. <i>Journal of Chemical Physics</i> , 2000 , 113, 2016-2020	3.9	19
71	Synthesis of Soluble and Processable Rod-, Arrow-, Teardrop-, and Tetrapod-Shaped CdSe Nanocrystals. <i>Journal of the American Chemical Society</i> , 2000 , 122, 12700-12706	16.4	1619
70	Structural Disorder in Colloidal InAs and CdSe Nanocrystals Observed by X-Ray Absorption Near-Edge Spectroscopy. <i>Physical Review Letters</i> , 1999 , 83, 3474-3477	7.4	73
69	Dynamics of exciton localization in CdS/HgS quantum-dot quantum wells. <i>Physical Review B</i> , 1999 , 59, 4973-4979	3.3	27
68	Fabrication of metallic electrodes with nanometer separation by electromigration. <i>Applied Physics Letters</i> , 1999 , 75, 301-303	3.4	740
67	NMR study of InP quantum dots: Surface structure and size effects. <i>Journal of Chemical Physics</i> , 1999 , 110, 8861-8864	3.9	70
66	Spin coherence in semiconductor quantum dots. <i>Physical Review B</i> , 1999 , 59, R10421-R10424	3.3	197

65	CdSe Nanocrystal Rods/Poly(3-hexylthiophene) Composite Photovoltaic Devices. <i>Advanced Materials</i> , 1999 , 11, 923-927	24	498
64	DNA als Ger\textst zur Bildung von Aggregaten aus Gold-Nanokristallen. <i>Angewandte Chemie</i> , 1999 , 111, 1925-1929	3.6	72
63	DNA-Based Assembly of Gold Nanocrystals. <i>Angewandte Chemie - International Edition</i> , 1999 , 38, 1808-1	181624	592
62	Structural transformations and metastability in semiconductor nanocrystals. <i>Phase Transitions</i> , 1999 , 68, 1-25	1.3	14
61	A New Nonhydrolytic Single-Precursor Approach to Surfactant-Capped Nanocrystals of Transition Metal Oxides. <i>Journal of the American Chemical Society</i> , 1999 , 121, 11595-11596	16.4	647
60	Evidence for a thermal contribution to emission intermittency in single CdSe/CdS core/shell nanocrystals. <i>Journal of Chemical Physics</i> , 1999 , 110, 1195-1201	3.9	208
59	DNA-Based Assembly of Gold Nanocrystals 1999 , 38, 1808		10
58	CdSe Nanocrystal Rods/Poly(3-hexylthiophene) Composite Photovoltaic Devices 1999 , 11, 923		21
57	Kinetics of II-VI and III-V Colloidal Semiconductor Nanocrystal Growth: H ocusinglof Size Distributions. <i>Journal of the American Chemical Society</i> , 1998 , 120, 5343-5344	16.4	1606
56	From Molecules to Materials: Current Trends and Future Directions. <i>Advanced Materials</i> , 1998 , 10, 1297	-1436	390
55	Combinatorial approaches toward patterning nanocrystals. <i>Journal of Applied Physics</i> , 1998 , 84, 3664-36	5205	116
54	Size-dependent electronic level structure of InAs nanocrystal quantum dots: Test of multiband effective mass theory. <i>Journal of Chemical Physics</i> , 1998 , 109, 2306-2309	3.9	142
53	Solution-State NMR Studies of the Surface Structure and Dynamics of Semiconductor Nanocrystals. Journal of Physical Chemistry B, 1998 , 102, 10117-10128	3.4	62
52	Semiconductor nanocrystals as fluorescent biological labels. <i>Science</i> , 1998 , 281, 2013-6	33.3	7202
51	From Molecules to Materials: Current Trends and Future Directions 1998 , 10, 1297		9
50	Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility. <i>Journal of the American Chemical Society</i> , 1997 , 119, 7019-7029	16.4	2116
49	Quantum confinement and ultrafast dephasing dynamics in InP nanocrystals. <i>Physical Review B</i> , 1997 , 55, 7059-7067	3.3	65
48	Size Dependence of Structural Metastability in Semiconductor Nanocrystals. <i>Science</i> , 1997 , 276, 398-40	133.3	492

47	Charge separation and transport in conjugated polymer/cadmium selenide nanocrystal composites studied by photoluminescence quenching and photoconductivity. <i>Synthetic Metals</i> , 1997 , 84, 545-546	3.6	101
46	A single-electron transistor made from a cadmium selenide nanocrystal. <i>Nature</i> , 1997 , 389, 699-701	50.4	1076
45	Nanocrystals: Building blocks for modern materials design. <i>Endeavour</i> , 1997 , 21, 56-60	0.5	105
44	Synthesis and Isolatin of a Homodimer of Cadmium Selenide Nanocrystals. <i>Angewandte Chemie International Edition in English</i> , 1997 , 36, 145-147		101
43	Exchange interaction in InAs nanocrystal quantum dots. Superlattices and Microstructures, 1997, 22, 559	-5.68	58
42	Scanned probe investigations of chemically derived nanostructures. <i>Nanotechnology</i> , 1996 , 7, 397-400	3.4	10
41	Colloidal chemical synthesis and characterization of InAs nanocrystal quantum dots. <i>Applied Physics Letters</i> , 1996 , 69, 1432-1434	3.4	399
40	Pressure-induced structural transformations in Si nanocrystals: Surface and shape effects. <i>Physical Review Letters</i> , 1996 , 76, 4384-4387	7.4	208
39	An approach to electrical studies of single nanocrystals. <i>Applied Physics Letters</i> , 1996 , 68, 2574-2576	3.4	299
38	29Si high resolution solid state nuclear magnetic resonance spectroscopy of porous silicon. <i>Journal of Non-Crystalline Solids</i> , 1996 , 202, 68-76	3.9	19
37	Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity. <i>Physical Review B</i> , 1996 , 54, 17628-17	637	1309
36	Structural and spectroscopic investigations of CdS/HgS/CdS quantum-dot quantum wells. <i>Physical Review B</i> , 1996 , 53, R13242-R13245	3.3	232
35	Semiconductor Clusters, Nanocrystals, and Quantum Dots. <i>Science</i> , 1996 , 271, 933-937	33.3	9679
34	Organization of 'nanocrystal molecules' using DNA. <i>Nature</i> , 1996 , 382, 609-11	50.4	2569
33	Structure of chemically synthesized nanophase GaAs studied by nuclear magnetic resonance and x-ray diffraction. <i>Journal of Chemical Physics</i> , 1995 , 103, 4834-4840	3.9	13
32	Semiconductor Nanocrystals. <i>MRS Bulletin</i> , 1995 , 20, 23-32	3.2	90
31	The wurtzite to rock salt structural transformation in CdSe nanocrystals under high pressure. <i>Journal of Chemical Physics</i> , 1995 , 102, 4642-4656	3.9	325
30	Germanium quantum dots: Optical properties and synthesis. <i>Journal of Chemical Physics</i> , 1994 , 101, 160)7 5 .1961!	5 172

29	Electric field modulation studies of optical absorption in CdSe nanocrystals: Dipolar character of the excited state. <i>Journal of Chemical Physics</i> , 1994 , 101, 7122-7138	3.9	96
28	Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. <i>Nature</i> , 1994 , 370, 354-357	50.4	3509
27	Comparison of quantum confinement effects on the electronic absorption spectra of direct and indirect gap semiconductor nanocrystals. <i>Physical Review Letters</i> , 1994 , 73, 3266-3269	7.4	116
26	Size Dependence of a First Order Solid-Solid Phase Transition: The Wurtzite to Rock Salt Transformation in CdSe Nanocrystals. <i>Science</i> , 1994 , 265, 373-6	33.3	440
25	Threshold for quasicontinuum absorption and reduced luminescence efficiency in CdSe nanocrystals. <i>Journal of Chemical Physics</i> , 1994 , 101, 8455-8460	3.9	141
24	Quantum size dependence of femtosecond electronic dephasing and vibrational dynamics in CdSe nanocrystals. <i>Physical Review B</i> , 1994 , 49, 14435-14447	3.3	257
23	Investigation of femtosecond electronic dephasing in CdSe nanocrystals using quantum-beat-suppressed photon echoes. <i>Physical Review Letters</i> , 1993 , 70, 1014-1017	7.4	159
22	Resonance Raman studies of the ground and lowest electronic excited state in CdS nanocrystals. Journal of Chemical Physics, 1993 , 98, 8432-8442	3.9	220
21	Size dependence of the solid-solid phase transition in CdSe nanocrystals. <i>Zeitschrift Fd Physik D-Atoms Molecules and Clusters</i> , 1993 , 26, 56-58		30
20	CdSe nanocrystals with a dipole moment in the first excited state. <i>Journal of Chemical Physics</i> , 1992 , 97, 730-733	3.9	110
19	Semiconductor nanocrystals covalently bound to metal surfaces with self-assembled monolayers. Journal of the American Chemical Society, 1992 , 114, 5221-5230	16.4	532
18	Melting in semiconductor nanocrystals. <i>Science</i> , 1992 , 256, 1425-7	33.3	856
17	NMR studies of the surface structure and dynamics of semiconductor nanocrystals. <i>Chemical Physics Letters</i> , 1992 , 198, 431-436	2.5	96
16	Raman studies on C60 at high pressures and low temperatures. <i>Chemical Physics Letters</i> , 1992 , 188, 163	-1657	58
15	Valence-band photoemission from a quantum-dot system. <i>Physical Review Letters</i> , 1991 , 66, 2786-2789	7.4	153
14	Lattice reorganization in electronically excited semiconductor clusters. <i>Journal of Chemical Physics</i> , 1990 , 92, 3232-3233	3.9	54
13	Organometallic synthesis of gallium-arsenide crystallites, exhibiting quantum confinement. <i>Journal of the American Chemical Society</i> , 1990 , 112, 9438-9439	16.4	215
12	Electron libration coupling in semiconductor clusters studied by resonance Raman spectroscopy. <i>Journal of Chemical Physics</i> , 1989 , 90, 3463-3468	3.9	260

LIST OF PUBLICATIONS

1	Surface derivatization and isolation of semiconductor cluster molecules. <i>Journal of the Amel Chemical Society</i> , 1988 , 110, 3046-3050	16.4	621
1	Resonance Raman scattering and optical absorption studies of CdSe microclusters at high particles of CdSe microclusters at hig	ressure.	87
9	Electronic states of semiconductor clusters: Homogeneous and inhomogeneous broadening optical spectrum. <i>Journal of Chemical Physics</i> , 1988 , 89, 4001-4011	of the 3.9	322
8	Nonradiative damping of molecular electronic excited states by metal surfaces. <i>Surface Scie</i> 1985 , 158, 103-125	nce, 1.8	132
7	Distance Dependence of Electronic Energy Transfer to Semiconductor Surfaces: n3 ⁸ Pyrazine/GaAs(110). <i>Physical Review Letters</i> , 1983 , 50, 1092-1094	7-4	49
6	6 High Resolution Imaging in the Graphene Liquid Cell393-407		1
5	Quantum Dots: Inorganic Fluorescent Probes for Single-Molecule Tracking Experiments in Li	ve Cells67-96	1
4	4 Quantum Dots4-49		2
3	Multilayer Diffraction Reveals That Colloidal Superlattices Approach the Structural Perfection Single Crystals	on of	2
2	Nanocrystals as Model Systems for Studying the Interplay Between Crystallization and Chira Israel Journal of Chemistry,	lity. 3·4	2
1	1 Quantum Dots3-47		4