Beata Korchowiec

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9072520/publications.pdf

Version: 2024-02-01

687363 752698 30 441 13 20 citations h-index g-index papers 30 30 30 546 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A Langmuir film approach to elucidating interactions in lipid membranes: 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine/cholesterol/metal cation systems. Chemistry and Physics of Lipids, 2006, 144, 127-136.	3.2	50
2	Impact of two different saponins on the organization of model lipid membranes. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 1963-1973.	2.6	43
3	Interfacial Approach to Polyaromatic Hydrocarbon Toxicity: Phosphoglyceride and Cholesterol Monolayer Response to Phenantrene, Anthracene, Pyrene, Chrysene, and Benzo[a]pyrene. Journal of Physical Chemistry B, 2008, 112, 13518-13531.	2.6	24
4	Effects of gemini amphiphilic pseudopeptides on model lipid membranes: A Langmuir monolayer study. Colloids and Surfaces B: Biointerfaces, 2013, 102, 659-666.	5.0	22
5	Glycolipid–cholesterol monolayers: Towards a better understanding of the interaction between the membrane components. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 2466-2476.	2.6	21
6	The Mechanism of Metal Cation Binding in Two Nalidixate Calixarene Conjugates. A Langmuir Film and Molecular Modeling Study. Journal of Physical Chemistry B, 2010, 114, 10427-10435.	2.6	20
7	Interaction of a \hat{l}^2 -lactam calixarene derivative with a model eukaryotic membrane affects the activity of PLA2. Colloids and Surfaces B: Biointerfaces, 2013, 103, 217-222.	5.0	19
8	Modeling Lung Surfactant Interactions with Benzo[a]pyrene. Chemistry - A European Journal, 2017, 23, 5307-5316.	3.3	19
9	Interaction of amphiphilic chlorin-based photosensitizers with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine monolayers. Chemistry and Physics of Lipids, 2009, 158, 102-109.	3.2	18
10	Enzymatic Probing of Model Lipid Membranes: Phospholipase A2 Activity toward Monolayers Modified by Oxicam NSAIDs. Journal of Physical Chemistry B, 2011, 115, 9290-9298.	2.6	17
11	Nanoscale investigation of the interaction of colistin with model phospholipid membranes by Langmuir technique, and combined infrared and force spectroscopies. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 2592-2602.	2.6	17
12	The selective interactions of cationic tetra-p-guanidinoethylcalix[4] arene with lipid membranes: theoretical and experimental model studies. Soft Matter, 2016, 12, 181-190.	2.7	17
13	The impact of lipid oxidation on the functioning of a lung surfactant model. Physical Chemistry Chemical Physics, 2018, 20, 24968-24978.	2.8	15
14	DFT Study on the Selectivity of Complexation of Metal Cations with a Dioxadithia Crown Ether Ligand. Journal of Physical Chemistry A, 2008, 112, 13633-13640.	2.5	14
15	Molecular Organization of Nalidixate Conjugated Calixarenes in Bacterial Model Membranes Probed by Molecular Dynamics Simulation and Langmuir Monolayer Studies. Journal of Physical Chemistry B, 2015, 119, 2990-3000.	2.6	14
16	Vibrational, calorimetric, and molecular conformational study on calcein interaction with model lipid membrane. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	12
17	A Study of the Interaction between a Family of Gemini Amphiphilic Pseudopeptides and Model Monomolecular Film Membranes Formed with a Cardiolipin. Journal of Physical Chemistry B, 2015, 119, 6668-6679.	2.6	12
18	Properties of Lipid Models of Lung Surfactant Containing Cholesterol and Oxidized Lipids: A Mixed Experimental and Computational Study. Langmuir, 2020, 36, 1023-1033.	3.5	12

#	Article	IF	CITATIONS
19	Two antibacterial nalidixate calixarene derivatives in cholesterol monolayers: Molecular dynamics and physicochemical effects. Colloids and Surfaces B: Biointerfaces, 2016, 145, 777-784.	5.0	10
20	A Langmuir monolayer study of the action of phospholipase A2 on model phospholipid and mixed phospholipid-GM1 ganglioside membranes. Colloids and Surfaces B: Biointerfaces, 2014, 116, 389-395.	5.0	9
21	Structure â;; membrane activity relationship in a family of peptide-based gemini amphiphiles: An insight from experimental and theoretical model systems. Colloids and Surfaces B: Biointerfaces, 2016, 146, 54-62.	5.0	9
22	Complexation of Metal Ions in Langmuir Films Formed with Two Amphiphilic Dioxadithia Crown Ethers. Journal of Physical Chemistry B, 2008, 112, 10953-10963.	2.6	8
23	The role of DPPG in lung surfactant exposed to benzo[<i>a< i>]pyrene. Environmental Sciences: Processes and Impacts, 2019, 21, 438-445.</i>	3.5	7
24	Lung surfactant monolayer – A good natural barrier against dibenzo-p-dioxins. Chemosphere, 2020, 240, 124850.	8.2	7
25	Thermodynamic and spectroscopic properties of mixtures of \hat{l}^2 -lactoglobulin and dioleylphosphatidylcholine. Colloid and Polymer Science, 1997, 275, 860-868.	2.1	6
26	The lung surfactant activity probed with molecular dynamics simulations. Advances in Colloid and Interface Science, 2022, 304, 102659.	14.7	6
27	The interaction of an amphiphile crown ether with divalent metal ions. An electrochemical, Langmuir film, and molecular modeling study. Thin Solid Films, 2019, 683, 49-56.	1.8	4
28	Charge distributions for molecular dynamics simulations from selfâ€consistent polarization method. Journal of Computational Chemistry, 2020, 41, 2591-2597.	3.3	3
29	The hydrophobic core effect in model bacterial membranes upon interaction with tetra-p-guanidinoethylcalix[4]arene. Journal of Molecular Liquids, 2021, 343, 117636.	4.9	3
30	The Molecular Bases of the Interaction between a Saponin from the Roots of Gypsophila paniculata L. and Model Lipid Membranes. International Journal of Molecular Sciences, 2022, 23, 3397.	4.1	3