Silvia Diez-Gonzalez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9072402/publications.pdf Version: 2024-02-01

SILVIA DIEZ-CONZALEZ

#	Article	IF	CITATIONS
1	N-Heterocyclic Carbenes in Late Transition Metal Catalysis. Chemical Reviews, 2009, 109, 3612-3676.	47.7	2,800
2	N-Heterocyclic Carbenes as Organocatalysts. Angewandte Chemie - International Edition, 2007, 46, 2988-3000.	13.8	1,384
3	Stereoelectronic parameters associated with N-heterocyclic carbene (NHC) ligands: A quest for understanding. Coordination Chemistry Reviews, 2007, 251, 874-883.	18.8	822
4	(NHC)Copper(I)-Catalyzed [3+2] Cycloaddition of Azides and Mono- or Disubstituted Alkynes. Chemistry - A European Journal, 2006, 12, 7558-7564.	3.3	343
5	Copper, Silver, and Gold Complexes in Hydrosilylation Reactions. Accounts of Chemical Research, 2008, 41, 349-358.	15.6	342
6	Aul-Catalyzed Tandem [3,3] Rearrangement–Intramolecular Hydroarylation: Mild and Efficient Formation of Substituted Indenes. Angewandte Chemie - International Edition, 2006, 45, 3647-3650.	13.8	311
7	[(NHC) ₂ Cu]X Complexes as Efficient Catalysts for Azide–Alkyne Click Chemistry at Low Catalyst Loadings. Angewandte Chemie - International Edition, 2008, 47, 8881-8884.	13.8	257
8	A Simple and Efficient Copper-Catalyzed Procedure for the Hydrosilylation of Hindered and Functionalized Ketones. Journal of Organic Chemistry, 2005, 70, 4784-4796.	3.2	200
9	[(NHC)CuX] complexes: Synthesis, characterization and catalytic activities in reduction reactions and Click Chemistry. On the advantage of using well-defined catalytic systems. Dalton Transactions, 2010, 39, 7595.	3.3	197
10	[CuBr(PPh ₃) ₃] for Azideâ^Alkyne Cycloaddition Reactions under Strict Click Conditions. Journal of Organic Chemistry, 2011, 76, 2367-2373.	3.2	180
11	Well-defined copper(i) complexes for Click azide–alkyne cycloaddition reactions: one Click beyond. Catalysis Science and Technology, 2011, 1, 166.	4.1	176
12	Simple Synthesis of CpNi(NHC)Cl Complexes (Cp = Cyclopentadienyl; NHC = N-Heterocyclic Carbene). Organometallics, 2005, 24, 3442-3447.	2.3	163
13	Cationic Copper(I) Complexes as Efficient Precatalysts for the Hydrosilylation of Carbonyl Compounds. Organometallics, 2006, 25, 2355-2358.	2.3	154
14	Synthesis and Characterization of [Cu(NHC) ₂]X Complexes: Catalytic and Mechanistic Studies of Hydrosilylation Reactions. Chemistry - A European Journal, 2008, 14, 158-168.	3.3	145
15	A [(NHC)CuCl] complex as a latent Click catalyst. Chemical Communications, 2008, , 4747.	4.1	143
16	Au/Ag-Cocatalyzed Aldoximes to Amides Rearrangement under Solvent- and Acid-Free Conditions. Journal of Organic Chemistry, 2010, 75, 1197-1202.	3.2	139
17	N-Heterocyclic Carbene-Copper(I) Complexes in Homogeneous Catalysis. Synlett, 2007, 2007, 2158-2167.	1.8	123
18	TRANSITION METAL-CATALYZED HYDROSILYLATION OF CARBONYL COMPOUNDS AND IMINES. A REVIEW. Organic Preparations and Procedures International, 2007, 39, 523-559.	1.3	123

SILVIA DIEZ-GONZALEZ

#	Article	IF	CITATIONS
19	Copperâ^'Carbene Complexes as Catalysts in the Synthesis of Functionalized Styrenes and Aliphatic Alkenes. Journal of Organic Chemistry, 2007, 72, 144-149.	3.2	89
20	A Three-Component Tandem Reductive Aldol Reaction Catalyzed by N-Heterocyclic Carbeneâ^'Copper Complexes. Organic Letters, 2006, 8, 6059-6062.	4.6	86
21	Toxicity of Copper(I)–NHC Complexes Against Human Tumor Cells: Induction of Cell Cycle Arrest, Apoptosis, and DNA Cleavage. Chemistry - A European Journal, 2009, 15, 314-318.	3.3	86
22	Reusable and highly active supported copper(i)–NHC catalysts for Click chemistry. Chemical Communications, 2013, 49, 11358.	4.1	79
23	Palladium-catalyzed Reactions Using NHC Ligands. , 2006, , 47-82.		78
24	Catalytic and Computational Studies of N-Heterocyclic Carbene or Phosphine-Containing Copper(I) Complexes for the Synthesis of 5-lodo-1,2,3-Triazoles. ACS Catalysis, 2014, 4, 2274-2287.	11.2	62
25	8ÂÂCarbene and transition metal-mediated transformations. Annual Reports on the Progress of Chemistry Section B, 2005, 101, 171.	0.9	33
26	Ringâ€Expanded Nâ€Heterocyclic Carbenes for Copperâ€Mediated Azide–Alkyne Click Cycloaddition Reactions. ChemCatChem, 2018, 10, 2041-2045.	3.7	32
27	Thermal azide–alkene cycloaddition reactions: straightforward multi-gram access to Δ ² -1,2,3-triazolines in deep eutectic solvents. Green Chemistry, 2018, 20, 4023-4035.	9.0	30
28	Synthesis of (±)-1,2,3-triazolo-3′-deoxy-4′-hydroxymethyl carbanucleosides via â€~click' cycloaddition. Tetrahedron, 2009, 65, 1162-1170.	1.9	25
29	Copper(I)–Phosphinite Complexes in Click Cycloadditions: Three omponent Reactions and Preparation of 5″odotriazoles. ChemCatChem, 2016, 8, 2222-2226.	3.7	24
30	Chiral transition-metal complexes as BrÃ,nsted-acid catalysts for the asymmetric Friedel–Crafts hydroxyalkylation of indoles. Dalton Transactions, 2014, 43, 11260-11268.	3.3	23
31	The Use of Ligands in Copper-Catalyzed [3+2] Azide-Alkyne Cycloaddition: Clicker than Click Chemistry?. Current Organic Chemistry, 2011, 15, 2830-2845.	1.6	22
32	Functionalised [(NHC)Pd(allyl)Cl] complexes: Synthesis, immobilisation and application in cross-coupling and dehalogenation reactions. Catalysis Communications, 2016, 87, 78-81.	3.3	20
33	Copper-mediated reduction of azides under seemingly oxidising conditions: catalytic and computational studies. Catalysis Science and Technology, 2018, 8, 5763-5773.	4.1	19
34	On the Unique Reactivity of Pd(OAc) ₂ with Organic Azides: Expedient Synthesis of Nitriles and Imines. ChemCatChem, 2013, 5, 1722-1724.	3.7	17
35	HBF ₄ atalysed Nucleophilic Substitutions of Propargylic Alcohols. European Journal of Organic Chemistry, 2015, 2015, 7544-7549.	2.4	17
36	Well-Defined Diimine Copper(I) Complexes as Catalysts in Click Azide-Alkyne Cycloaddition Reactions. Molecules, 2013, 18, 8919-8928.	3.8	16

SILVIA DIEZ-GONZALEZ

#	Article	IF	CITATIONS
37	Cycloaddition Reactions of Azides and Electronâ€Deficient Alkenes in Deep Eutectic Solvents: Pyrazolines, Aziridines and Other Surprises. Advanced Synthesis and Catalysis, 2020, 362, 1877-1886.	4.3	14
38	Homo- and Heteroleptic Copper(I) Complexes with Diazabutadiene Ligands: Synthesis, Solution- and Solid-State Structural Studies. European Journal of Inorganic Chemistry, 2016, 2016, 4649-4658.	2.0	10
39	Synthesis of 1â€Silabicyclo[4.4.0]decâ€5â€enâ€4â€ones: A Model of the A and B Rings of 10â€Silatestosterone. European Journal of Organic Chemistry, 2008, 2008, 3298-3307.	2.4	9
40	Synthesis of 2-methylidene-1-silacyclohexanes by intramolecular hydrosilylation. Journal of Organometallic Chemistry, 2008, 693, 2033-2040.	1.8	9
41	Study of Copper(I) Catalysts for the Synthesis of Carbanucleosides via Azide-Alkyne 1,3-Dipolar Cycloaddition. Synthesis, 2008, 2008, 141-148.	2.3	9
42	The Acetate Proton Shuttle between Mutually <i>Trans</i> Ligands. Organometallics, 2018, 37, 2645-2651.	2.3	9
43	Metal-Free 1,2,3-Triazole Synthesis in Deep Eutectic Solvents. Synlett, 2020, 31, 605-609.	1.8	9
44	A Commercially Available and Userâ€Friendly Catalyst for Hydroamination Reactions under Technical Conditions. European Journal of Organic Chemistry, 2019, 2019, 4725-4730.	2.4	7
45	Synthesis of 2-methylidene-1-silacyclohexanes from 2,6-dibromohex-1-ene and polyhalosilanes. Journal of Organometallic Chemistry, 2006, 691, 5531-5539.	1.8	6
46	Taming BrÃ,nsted Acid Reactivity: Nucleophilic Substitutions of Propargylic Alcohols with N-Nucleophiles Mediated by Phosphorus-Based BrÃ,nsted Acid Catalysts. ACS Omega, 2019, 4, 12300-12307.	3.5	6
47	Cp*Fe(Me2PCH2CH2PMe2)(CHO): Hydride shuttle reactivity of a thermally stable formyl complex. Inorganica Chimica Acta, 2019, 488, 201-207.	2.4	6
48	Userâ€Friendly Copper atalysed Reduction of Azides to Amines. Asian Journal of Organic Chemistry, 2020, 9, 399-403.	2.7	3
49	Expedient metal-free preparation of aryl aziridines <i>via</i> thermal cycloaddition reactions. Chemical Communications, 2022, 58, 3681-3684.	4.1	2
50	A Simple and Efficient Copper-Catalyzed Procedure for the Hydrosilylation of Hindered and Functionalized Ketones ChemInform, 2005, 36, no.	0.0	0
51	A Simple and Efficient Copper-Catalyzed Procedure for the Hydrosilylation of Hindered and Functionalized Ketones ChemInform, 2005, 36, no.	0.0	0