List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/907236/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Graphene-MoS2 polyfunctional hybrid hydrogels for the healing of transected Achilles tendon. , 2022, 137, 212820.		9
2	Efficient wound healing by antibacterial property: Advances and trends of hydrogels, hydrogel-metal NP composites and photothermal therapy platforms. Journal of Drug Delivery Science and Technology, 2022, 73, 103458.	1.4	23
3	Graphene Sheets with Defined Dual Functionalities for the Strong SARSâ€CoVâ€2 Interactions. Small, 2021, 17, e2007091.	5.2	42
4	Covalent Decoration of MoS2 Platforms by Silver Nanoparticles through the Reversible Addition–Fragmentation Chain Transfer Reaction. Langmuir, 2021, 37, 3382-3390.	1.6	7
5	Nonspherical Metalâ€Based Nanoarchitectures: Synthesis and Impact of Size, Shape, and Composition on Their Biological Activity. Small, 2021, 17, e2007073.	5.2	33
6	Grapheneâ€Assisted Synthesis of 2D Polyglycerols as Innovative Platforms for Multivalent Virus Interactions. Advanced Functional Materials, 2021, 31, 2009003.	7.8	9
7	Wrapping and Blocking of Influenza A Viruses by Sialylated 2D Nanoplatforms. Advanced Materials Interfaces, 2021, 8, 2100285.	1.9	17
8	Self-healable and flexible supramolecular gelatin/MoS2 hydrogels with molecular recognition properties. International Journal of Biological Macromolecules, 2021, 182, 2048-2055.	3.6	25
9	Functionalized Graphene Platforms for Anticancer Drug Delivery. International Journal of Nanomedicine, 2021, Volume 16, 5955-5980.	3.3	39
10	Coâ€Đelivery of Doxorubicin and Chloroquine by Polyglycerol Functionalized MoS2 Nanosheets for Efficient Multidrugâ€Resistant Cancer Therapy. Macromolecular Bioscience, 2021, 21, e2100233.	2.1	7
11	Synthesis of Multifunctional Charge-Transfer Agents: Toward Single-Walled Carbon Nanotubes with Defined Covalent Functionality and Preserved I€ System. Journal of Physical Chemistry C, 2021, 125, 19925-19935.	1.5	0
12	Boronic acid functionalized graphene platforms for diabetic wound healing. Carbon, 2020, 158, 327-336.	5.4	29
13	Graphene-dendritic polymer hybrids: synthesis, properties, and applications. Journal of the Iranian Chemical Society, 2020, 17, 735-764.	1.2	9
14	Fabrication of new generation of co-delivery systems based on graphene-g-cyclodextrin/chitosan nanofiber. International Journal of Biological Macromolecules, 2020, 156, 1126-1134.	3.6	28
15	Two-dimensional MoS ₂ : a platform for constructing three-dimensional structures using RAFT polymerization. New Journal of Chemistry, 2020, 44, 17961-17969.	1.4	4
16	Synthesis of glycerolâ€thiophene nanoparticles, a suitable sensing platform for voltammetric determination of guaifenesin. Journal of Polymer Science, 2020, 58, 2784-2791.	2.0	3
17	Self-degrading graphene sheets for tumor therapy. Nanoscale, 2020, 12, 14222-14229.	2.8	17
18	Graphene Oxideâ€Cyclic R10 Peptide Nuclear Translocation Nanoplatforms for the Surmounting of Multipleâ€Drug Resistance. Advanced Functional Materials, 2020, 30, 2000933.	7.8	39

#	Article	IF	CITATIONS
19	Metal-Assisted and Solvent-Mediated Synthesis of Two-Dimensional Triazine Structures on Gram Scale. Journal of the American Chemical Society, 2020, 142, 12976-12986.	6.6	21
20	Reversible Photothermal Homogenization of Fluorous Biphasic Systems with Perfluoroalkylated Nanographene. ACS Applied Nano Materials, 2020, 3, 1139-1146.	2.4	5
21	Boronic Acid-Functionalized Two-Dimensional MoS ₂ at Biointerfaces. Langmuir, 2020, 36, 6706-6715.	1.6	18
22	Functionalized nanographene sheets with high antiviral activity through synergistic electrostatic and hydrophobic interactions. Nanoscale, 2019, 11, 15804-15809.	2.8	83
23	Low temperature functionalization of two-dimensional boron nitride for electrochemical sensing. Materials Research Express, 2019, 6, 095076.	0.8	12
24	Construction and Evaluation of a Self-Calibrating Multiresponse and Multifunctional Graphene Biosensor. Langmuir, 2019, 35, 10461-10474.	1.6	23
25	Photoswitchable single-walled carbon nanotubes for super-resolution microscopy in the near-infrared. Science Advances, 2019, 5, eaax1166.	4.7	42
26	Gram Scale and Room Temperature Functionalization of Boron Nitride Nanosheets for Water Treatment. Nano, 2019, 14, 1950107.	0.5	5
27	Synthesis of boronic acidâ€functionalized poly(glycerolâ€oligoγâ€butyrolactone): Nanoâ€networks for efficient electrochemical sensing of biosystems. Journal of Polymer Science Part A, 2019, 57, 1430-1439.	2.5	11
28	Thermoresponsive Amphiphilic Functionalization of Thermally Reduced Graphene Oxide to Study Graphene/Bacteria Hydrophobic Interactions. Langmuir, 2019, 35, 4736-4746.	1.6	46
29	Mechanistic Understanding of the Interactions between Nano-Objects with Different Surface Properties and α-Synuclein. ACS Nano, 2019, 13, 3243-3256.	7.3	51
30	Scalable Production of Nanographene and Doping via Nondestructive Covalent Functionalization. Small, 2019, 15, e1805430.	5.2	19
31	Glyco-functionalized graphene oxides as green antibacterial absorbent materials. Journal of the Taiwan Institute of Chemical Engineers, 2019, 96, 176-184.	2.7	11
32	The bio-interface between functionalized Au NR@GO nanoplatforms with protein corona and their impact on delivery and release system. Colloids and Surfaces B: Biointerfaces, 2019, 173, 891-898.	2.5	30
33	Development of new nanostructure based on poly(aspartic acid)-g-amylose for targeted curcumin delivery using helical inclusion complex. Journal of Molecular Liquids, 2018, 258, 18-26.	2.3	16
34	Interactions of Fullereneâ€Polyglycerol Sulfates at Viral and Cellular Interfaces. Small, 2018, 14, e1800189.	5.2	30
35	Preparation of new GO-based slide ring hydrogel through a convenient one-pot approach as methylene blue absorbent. Carbohydrate Polymers, 2018, 187, 94-101.	5.1	42
36	One-pot exfoliation, functionalization, and size manipulation of graphene sheets: efficient system for biomedical applications. Lasers in Medical Science, 2018, 33, 795-802.	1.0	10

#	Article	IF	CITATIONS
37	Synthesis of hyperbranched polyglycerols using ascorbic acid as an activator. RSC Advances, 2018, 8, 217-221.	1.7	6
38	Bioconjugated graphene oxide hydrogel as an effective adsorbent for cationic dyes removal. Ecotoxicology and Environmental Safety, 2018, 147, 34-42.	2.9	102
39	Cationic graphene oxide nanoplatform mediates miR-101 delivery to promote apoptosis by regulating autophagy and stress. International Journal of Nanomedicine, 2018, Volume 13, 5865-5886.	3.3	29
40	Convenient method for preparation of a new absorbent based on biofunctionalized graphene oxide hydrogels using nitrene chemistry and click reaction. Iranian Polymer Journal (English Edition), 2018, 27, 689-699.	1.3	5
41	pH-Responsive Hybrid Hydrogels as Antibacterial and Drug Delivery Systems. Polymers, 2018, 10, 660.	2.0	55
42	Polyglycerols. , 2018, , 103-171.		11
43	Functionalized 2D nanomaterials with switchable binding to investigate graphene–bacteria interactions. Nanoscale, 2018, 10, 9525-9537.	2.8	44
44	Fluorescent Polymer—Singleâ€Walled Carbon Nanotube Complexes with Charged and Noncharged Dendronized Perylene Bisimides for Bioimaging Studies. Small, 2018, 14, e1800796.	5.2	35
45	Multifunctional core-shell nanoplatforms (gold@graphene oxide) with mediated NIR thermal therapy to promote miRNA delivery. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 1891-1903.	1.7	54
46	Directed Grapheneâ€Based Nanoplatforms for Hyperthermia: Overcoming Multiple Drug Resistance. Angewandte Chemie - International Edition, 2018, 57, 11198-11202.	7.2	78
47	Multivalent Interactions between 2D Nanomaterials and Biointerfaces. Advanced Materials, 2018, 30, e1706709.	11.1	112
48	Directed Grapheneâ€Based Nanoplatforms for Hyperthermia: Overcoming Multiple Drug Resistance. Angewandte Chemie, 2018, 130, 11368-11372.	1.6	22
49	Preserving π-conjugation in covalently functionalized carbon nanotubes for optoelectronic applications. Nature Communications, 2017, 8, 14281.	5.8	130
50	Fullerene-Gold Core-Shell Structures and Their Self-Assemblies. International Journal of Nanoscience, 2017, 16, 1650029.	0.4	1
51	Functionalized Graphene as Extracellular Matrix Mimics: Toward Wellâ€Defined 2D Nanomaterials for Multivalent Virus Interactions. Advanced Functional Materials, 2017, 27, 1606477.	7.8	65
52	Controlled Covalent Functionalization of Thermally Reduced Graphene Oxide To Generate Defined Bifunctional 2D Nanomaterials. Angewandte Chemie - International Edition, 2017, 56, 2675-2679.	7.2	57
53	Controlled Covalent Functionalization of Thermally Reduced Graphene Oxide To Generate Defined Bifunctional 2D Nanomaterials. Angewandte Chemie, 2017, 129, 2719-2723.	1.6	21
54	Stimuliâ€Responsive Core Multishell Dendritic Nanocarriers. Macromolecular Chemistry and Physics, 2017, 218, 1600525.	1.1	9

#	Article	IF	CITATIONS
55	Fullerene Polyglycerol Amphiphiles as Unimolecular Transporters. Langmuir, 2017, 33, 6595-6600.	1.6	10
56	Green Synthesis of Hyperbranched Polyglycerol at Room Temperature. ACS Macro Letters, 2017, 6, 35-40.	2.3	37
57	Combination of Surface Charge and Size Controls the Cellular Uptake of Functionalized Graphene Sheets. Advanced Functional Materials, 2017, 27, 1701837.	7.8	98
58	One-pot and gram-scale synthesis of biodegradable polyglycerols under ambient conditions: nanocarriers for intradermal drug delivery. Polymer Chemistry, 2017, 8, 7375-7383.	1.9	26
59	Functionalized graphene sheets for intracellular controlled release of therapeutic agents. Nanoscale, 2017, 9, 18931-18939.	2.8	47
60	Thermodynamic investigations of fullerene-polyglycerol nanostructure in aqueous solutions. Fluid Phase Equilibria, 2017, 450, 57-64.	1.4	3
61	Synthesis of polyglycerol-citric acid nanoparticles as biocompatible vectors for biomedical applications. Journal of Molecular Liquids, 2017, 242, 53-58.	2.3	11
62	Synthesis of fluorescent <scp>ABA</scp> triblock copolymer via click reaction. Polymer International, 2016, 65, 559-566.	1.6	5
63	Preparation of graphene oxide by cyanuric chloride as an effective and non-corrosive oxidizing agent. RSC Advances, 2016, 6, 115055-115057.	1.7	4
64	Functionalization of fullerene at room temperature: toward new carbon vectors with improved physicochemical properties. RSC Advances, 2016, 6, 112771-112775.	1.7	11
65	Graphene–polyglycerol–curcumin hybrid as a near-infrared (NIR) laser stimuli-responsive system for chemo-photothermal cancer therapy. RSC Advances, 2016, 6, 61141-61149.	1.7	28
66	Anticancer drug delivery systems based on specific interactions between albumin and polyglycerol. RSC Advances, 2016, 6, 11266-11277.	1.7	17
67	Synthesis, self-assembly, and photocrosslinking of fullerene-polyglycerol amphiphiles as nanocarriers with controlled transport properties. Chemical Communications, 2016, 52, 4373-4376.	2.2	11
68	Synthesis of calixarene–polyglycerol conjugates and their self-assembly toward nano and microtubes. RSC Advances, 2016, 6, 17470-17473.	1.7	14
69	Synthesis of multiarm star copolymers based on polyglycerol cores with polylactide arms and their application as nanocarriers. RSC Advances, 2015, 5, 14958-14966.	1.7	29
70	Supramolecular anticancer drug delivery systems based on linear–dendritic copolymers. Polymer Chemistry, 2015, 6, 2580-2615.	1.9	52
71	Advances in the biomedical application of polymer-functionalized carbon nanotubes. Biomaterials Science, 2015, 3, 695-711.	2.6	25
72	Polyamidoamine and polyglycerol; their linear, dendritic and linear–dendritic architectures as anticancer drug delivery systems. Journal of Materials Chemistry B, 2015, 3, 3896-3921.	2.9	67

#	Article	IF	CITATIONS
73	Impact of dendritic polymers on nanomaterials. Polymer Chemistry, 2015, 6, 10-24.	1.9	37
74	Fully Supramolecular Polyrotaxanes as Biphase Drug Delivery Systems. International Journal of Polymer Science, 2014, 2014, 1-9.	1.2	3
75	pH-sensitive supramolecular copolydendrimers, new anticancer drug delivery system. Colloid and Polymer Science, 2014, 292, 3337-3346.	1.0	7
76	Dendritic polyglycerol cyclodextrin amphiphiles and their self-assembled architectures to transport hydrophobic guest molecules. RSC Advances, 2014, 4, 61656-61659.	1.7	17
77	Cytotoxicity of carbon nanotube/polycitric acid hybrid nanomaterials. Iranian Polymer Journal (English Edition), 2014, 23, 195-201.	1.3	6
78	Linear-dendritic copolymers/indoxacarb supramolecular systems: biodegradable and efficient nano-pesticides. Environmental Sciences: Processes and Impacts, 2014, 16, 2380-2389.	1.7	19
79	Albumin–graphene oxide conjugates; carriers for anticancer drugs. RSC Advances, 2014, 4, 33001.	1.7	41
80	A polyglycerol–polycaprolactone–polycitric acid copolymer and its self-assembly to produce medium-responsive nanoparticles. Journal of Materials Chemistry B, 2014, 2, 3589.	2.9	19
81	Polymer-functionalized carbon nanotubes in cancer therapy: a review. Iranian Polymer Journal (English Edition), 2014, 23, 387-403.	1.3	26
82	Preparation, characterization and efficiency of nanoencapsulated imidacloprid under laboratory conditions. Ecotoxicology and Environmental Safety, 2014, 107, 77-83.	2.9	63
83	Tumor-targeted drug delivery systems based on supramolecular interactions between iron oxide–carbon nanotubes PAMAM–PEC–PAMAM linear-dendritic copolymers. Journal of the Iranian Chemical Society, 2013, 10, 701-708.	1.2	16
84	Thermo- and pH-sensitive dendrosomes as bi-phase drug delivery systems. Nanomedicine: Nanotechnology, Biology, and Medicine, 2013, 9, 1203-1213.	1.7	28
85	Modified Gadonanotubes as a promising novel MRI contrasting agent. DARU, Journal of Pharmaceutical Sciences, 2013, 21, 53.	0.9	21
86	Synthesis of pseudopolyrotaxanes-coated Superparamagnetic Iron Oxide Nanoparticles as new MRI contrast agent. Colloids and Surfaces B: Biointerfaces, 2013, 103, 652-657.	2.5	15
87	Fully supramolecular vesicles as anticancer drug delivery systems. New Journal of Chemistry, 2013, 37, 295-298.	1.4	23
88	Enzymatic functionalization of nanomaterials: A strategy for engineering their surfaces. Polymer, 2013, 54, 4802-4806.	1.8	8
89	Hyperbranched poly(citric acid) and its application as anticancer drug delivery system. Journal of Applied Polymer Science, 2013, 129, 3665-3671.	1.3	29
90	Carbon nanotubes in cancer therapy: a more precise look at the role of carbon nanotube–polymer interactions. Chemical Society Reviews, 2013, 42, 5231.	18.7	129

#	Article	IF	CITATIONS
91	Preparation of hybrid nanomaterials by supramolecular interactions between dendritic polymers and carbon nanotubes. Polymer Chemistry, 2013, 4, 669-674.	1.9	25
92	Preparation of long supramolecular carbon nanotubes. New Journal of Chemistry, 2013, 37, 1871.	1.4	3
93	One-step synthesis of agarose coated magnetic nanoparticles and their application in the solid phase extraction of Pd(II) using a new magnetic field agitation device. Analytica Chimica Acta, 2013, 774, 44-50.	2.6	25
94	Edge-functionalization of graphene by polyglycerol; A way to change its flat topology. Polymer, 2013, 54, 2917-2925.	1.8	28
95	Quantitative study on the interaction of Ag+ and Pd2+ with CNT-graft-PCA (polycitric acid) in aqueous solution. Journal of Molecular Liquids, 2013, 180, 39-44.	2.3	8
96	Cyclodextrin-based dendritic supramolecules; new multivalent nanocarriers. RSC Advances, 2012, 2, 2756.	1.7	25
97	Noncovalent interactions between linear-dendritic copolymers and carbon nanotubes lead to liposome-like nanocapsules. Journal of Materials Chemistry, 2012, 22, 6947.	6.7	23
98	Fabrication of a modified electrode based on Fe3O4NPs/MWCNT nanocomposite: Application to simultaneous determination of guanine and adenine in DNA. Bioelectrochemistry, 2012, 86, 78-86.	2.4	65
99	A possible anticancer drug delivery system based on carbon nanotube–dendrimer hybrid nanomaterials. Journal of Materials Chemistry, 2011, 21, 15456.	6.7	55
100	Anticancer drug delivery systems based on noncovalent interactions between carbon nanotubes and linear–dendritic copolymers. Soft Matter, 2011, 7, 4062.	1.2	55
101	Polyrotaxane/gold nanoparticle hybrid nanomaterials as anticancer drug delivery systems. Journal of Materials Chemistry, 2011, 21, 18686.	6.7	39
102	Increased paclitaxel cytotoxicity against cancer cell lines using a novel functionalized carbon nanotube. International Journal of Nanomedicine, 2011, 6, 705.	3.3	63
103	Synthesis of new hybrid nanomaterials: promising systems for cancer therapy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2011, 7, 806-817.	1.7	29
104	Design and Synthesis of Novel Polyglycerol Hybrid Nanomaterials for Potential Applications in Drug Delivery Systems. Macromolecular Bioscience, 2011, 11, 383-390.	2.1	40
105	Fabrication new PES-based mixed matrix nanocomposite membranes using polycaprolactone modified carbon nanotubes as the additive: Property changes and morphological studies. Desalination, 2011, 277, 171-177.	4.0	106
106	Quantum dot-pseudopolyrotaxane supramolecules as anticancer drug delivery systems. Polymer, 2011, 52, 2401-2413.	1.8	30
107	HYBRID NANOMATERIALS CONTAINING PAMAM, POLYROTAXANE AND QUANTUM DOT BLOCKS. Nano, 2011, 06, 239-249.	0.5	4
108	SYNTHESIS OF HYBRID NANOMATERIALS USING LINEAR-DENDRITIC COPOLYMERS. Nano, 2011, 06, 301-311.	0.5	3

#	Article	IF	CITATIONS
109	Supramolecular hybrid nanomaterials as drug delivery systems. Supramolecular Chemistry, 2011, 23, 411-418.	1.5	9
110	Poly(citric acid)-block-poly(ethylene glycol) copolymers—new biocompatible hybrid materials for nanomedicine. Nanomedicine: Nanotechnology, Biology, and Medicine, 2010, 6, 556-562.	1.7	85
111	Dendritic macromolecules containing several types of functional groups. Journal of Applied Polymer Science, 2010, 115, 9-14.	1.3	7
112	Encapsulation of palladium nanoparticles by multiwall carbon nanotubesâ€∢i>graftâ€poly(citric acid) hybrid materials. Journal of Applied Polymer Science, 2010, 116, 2188-2196.	1.3	7
113	Synthesis of gold nanoparticle necklaces using linear–dendritic copolymers. European Polymer Journal, 2010, 46, 165-170.	2.6	26
114	Changing the performance and morphology of polyethersulfone/polyimide blend nanofiltration membranes using trimethylamine. Desalination, 2010, 256, 101-107.	4.0	39
115	CARBON NANOTUBE-GRAFT-POLY (CITRIC ACID) CONTAINING SILVER AND PALLADIUM NANOPARTICLES. Nano, 2009, 04, 217-223.	0.5	8
116	SYNTHESIS AND CHARACTERIZATION OF A NEW NANOCOMPOSITE BY FILLING OF CNT WITH CoFe₂O₄ MAGNETIC NANOPARTICLES AND GRAFTING TO POLYMER. Nano, 2009, 04, 371-376.	0.5	2
117	Surface modification and preparation of nanofiltration membrane from polyethersulfone/polyimide blend—Use of a new material (polyethyleneglycolâ€triazine). Journal of Applied Polymer Science, 2009, 112, 2888-2895.	1.3	23
118	Linearâ€dendritic copolymers as nanocatalysts. Journal of Applied Polymer Science, 2009, 113, 2072-2080.	1.3	16
119	Multi-walled carbon nanotubes with immobilised cobalt nanoparticle for modification of glassy carbon electrode: Application to sensitive voltammetric determination of thioridazine. Biosensors and Bioelectronics, 2009, 24, 3235-3241.	5.3	95
120	Carbon nanotubes-graft-polyglycerol: Biocompatible hybrid materials for nanomedicine. Polymer, 2009, 50, 3528-3536.	1.8	71
121	Nanocapsules based on carbon nanotubes- <i>graft</i> -polyglycerol hybrid materials. Nanotechnology, 2009, 20, 485603.	1.3	26
122	CARBON NANOTUBE-GRAFT-BLOCK COPOLYMERS CONTAINING SILVER NANOPARTICLES. International Journal of Nanoscience, 2009, 08, 533-541.	0.4	11
123	New nanocomposites containing metal nanoparticles, carbon nanotube and polymer. Journal of Nanoparticle Research, 2008, 10, 1309-1318.	0.8	85
124	Amphiphilic star copolymers containing cyclodextrin core and their application as nanocarrier. European Polymer Journal, 2008, 44, 1921-1930.	2.6	64
125	CARBON NANOTUBE- <i>GRAFT</i> -POLY(CITRIC ACID) NANOCOMPOSITES. Nano, 2008, 03, 37-44.	0.5	46
126	Linear-dendritic ABA triblock copolymers as nanocarriers. Journal of Applied Polymer Science, 2007, 104, 267-272.	1.3	24

#	Article	IF	CITATIONS
127	Effect of the shell on the transport properties of poly(glycerol) and Poly(ethylene imine) nanoparticles. Journal of Nanoparticle Research, 2007, 9, 1057-1065.	0.8	18
128	Encapsulation of nanoparticles using linear–dendritic macromolecules. Colloid and Polymer Science, 2007, 285, 1527-1533.	1.0	51
129	Multiarm star nanocarriers containing a poly(ethylene imine) core and polylactide arms. Journal of Polymer Science Part A, 2006, 44, 5740-5749.	2.5	78
130	Synthesis of barbell-like triblock copolymers, dendritic triazine-block-poly(ethylene) Tj ETQq0 0 0 rgBT /Overlock 1 10788-10799.	.0 Tf 50 62 1.8	27 Td (glyco 67
131	Dendrimers of citric acid and poly (ethylene glycol) as the new drug-delivery agents. Biomaterials, 2005, 26, 1175-1183.	5.7	241
132	Solution proprieties of dendritic triazine/poly(ethylene glycol)/dendritic triazine block copolymers. Journal of Polymer Science Part A, 2005, 43, 28-41.	2.5	78
133	Novel linear–globular thermoreversible hydrogel ABA type copolymers from dendritic citric acid as the A blocks and poly(ethyleneglycol) as the B block. European Polymer Journal, 2003, 39, 1491-1500.	2.6	101
134	Simultaneously Synthesis and Encapsulation of Metallic Nanoparticles Using Linear–Dendritic Block Copolymers of Poly(ethylene glycol)-Poly(citric acid). Key Engineering Materials, 0, 478, 7-12.	0.4	4
135	Preparing Starchy Foods Containing Silver Nanoparticles and Evaluating Antimicrobial Activitiy. Jundishapur Journal of Microbiology, 0, , .	0.2	4
136	Nanoscale Sensors Based on Conductive Polymers. ACS Symposium Series, 0, , 219-254.	0.5	0