
Stephan Herzig

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9072320/publications.pdf Version: 2024-02-01

STEDHAN HEDZIC

#	Article	IF	CITATIONS
1	CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. Nature, 2001, 413, 179-183.	13.7	1,238
2	TRB3: A tribbles Homolog That Inhibits Akt/PKB Activation by Insulin in Liver. Science, 2003, 300, 1574-1577.	6.0	775
3	PGC-1 promotes insulin resistance in liver through PPAR-α-dependent induction of TRB-3. Nature Medicine, 2004, 10, 530-534.	15.2	499
4	Glucocorticoids, metabolism and metabolic diseases. Molecular and Cellular Endocrinology, 2007, 275, 43-61.	1.6	418
5	Cyclooxygenase-2 Controls Energy Homeostasis in Mice by de Novo Recruitment of Brown Adipocytes. Science, 2010, 328, 1158-1161.	6.0	401
6	Alternatively activated macrophages do not synthesize catecholamines or contribute to adipose tissue adaptive thermogenesis. Nature Medicine, 2017, 23, 623-630.	15.2	282
7	CREB controls hepatic lipid metabolism through nuclear hormone receptor PPAR-γ. Nature, 2003, 426, 190-193.	13.7	280
8	Selective enrichment of newly synthesized proteins for quantitative secretome analysis. Nature Biotechnology, 2012, 30, 984-990.	9.4	234
9	Pancreatic cancer microenvironment. International Journal of Cancer, 2007, 121, 699-705.	2.3	190
10	Detecting endogenous SUMO targets in mammalian cells and tissues. Nature Structural and Molecular Biology, 2013, 20, 525-531.	3.6	188
11	Acetyl-CoA Carboxylase 1-Dependent Protein Acetylation Controls Breast Cancer Metastasis and Recurrence. Cell Metabolism, 2017, 26, 842-855.e5.	7.2	180
12	Attenuation of a phosphorylation-dependent activator by an HDAC–PP1 complex. Nature Structural and Molecular Biology, 2003, 10, 175-181.	3.6	179
13	Adipose tissue: between the extremes. EMBO Journal, 2017, 36, 1999-2017.	3.5	172
14	MicroRNA-26 Family Is Required for Human Adipogenesis and Drives Characteristics of Brown Adipocytes. Stem Cells, 2014, 32, 1578-1590.	1.4	138
15	A liver stress-endocrine nexus promotes metabolic integrity during dietary protein dilution. Journal of Clinical Investigation, 2016, 126, 3263-3278.	3.9	138
16	Emerging Targets in Type 2 Diabetes and Diabetic Complications. Advanced Science, 2021, 8, e2100275.	5.6	133
17	The Glucocorticoid Receptor Controls Hepatic Dyslipidemia through Hes1. Cell Metabolism, 2008, 8, 212-223.	7.2	126
18	Cancer Cachexia: More Than Skeletal Muscle Wasting. Trends in Cancer, 2018, 4, 849-860.	3.8	123

#	Article	IF	CITATIONS
19	Protein Kinase G Controls Brown Fat Cell Differentiation and Mitochondrial Biogenesis. Science Signaling, 2009, 2, ra78.	1.6	118
20	Metabolic control through glucocorticoid hormones: An update. Molecular and Cellular Endocrinology, 2013, 380, 65-78.	1.6	109
21	Coactivator function of RIP140 for NFκB/RelA-dependent cytokine gene expression. Blood, 2008, 112, 264-276.	0.6	108
22	An AMP-activated protein kinase–stabilizing peptide ameliorates adipose tissue wasting in cancer cachexia in mice. Nature Medicine, 2016, 22, 1120-1130.	15.2	106
23	Energy metabolism in cachexia. EMBO Reports, 2019, 20, .	2.0	105
24	Inhibition of Endothelial Notch Signaling Impairs Fatty Acid Transport and Leads to Metabolic and Vascular Remodeling of the Adult Heart. Circulation, 2018, 137, 2592-2608.	1.6	103
25	Role of glucocorticoids and the glucocorticoid receptor in metabolism: Insights from genetic manipulations. Journal of Steroid Biochemistry and Molecular Biology, 2010, 122, 10-20.	1.2	97
26	Molecular Control of Systemic Bile Acid Homeostasis by the Liver Glucocorticoid Receptor. Cell Metabolism, 2011, 14, 123-130.	7.2	77
27	Liver-fibrosis-activated transcriptional networks govern hepatocyte reprogramming and intra-hepatic communication. Cell Metabolism, 2021, 33, 1685-1700.e9.	7.2	73
28	The ω6-fatty acid, arachidonic acid, regulates the conversion of white to brite adipocyte through a prostaglandin/calcium mediated pathway. Molecular Metabolism, 2014, 3, 834-847.	3.0	71
29	Mice lacking neutral amino acid transporter BOAT1 (Slc6a19) have elevated levels of FGF21 and GLP-1 and improved glycaemic control. Molecular Metabolism, 2015, 4, 406-417.	3.0	71
30	Positional Cloning of Zinc Finger Domain Transcription Factor Zfp69, a Candidate Gene for Obesity-Associated Diabetes Contributed by Mouse Locus Nidd/SJL. PLoS Genetics, 2009, 5, e1000541.	1.5	68
31	PRAS40 prevents development of diabetic cardiomyopathy and improves hepatic insulin sensitivity in obesity. EMBO Molecular Medicine, 2014, 6, 57-65.	3.3	68
32	The necroptosis-inducing kinase RIPK3 dampens adipose tissue inflammation and glucose intolerance. Nature Communications, 2016, 7, 11869.	5.8	68
33	Functional Inactivation of the Genome-Wide Association Study Obesity Gene Neuronal Growth Regulator 1 in Mice Causes a Body Mass Phenotype. PLoS ONE, 2012, 7, e41537.	1.1	66
34	Homeostatic nuclear RAGE–ATM interaction is essential for efficient DNA repair. Nucleic Acids Research, 2017, 45, 10595-10613.	6.5	66
35	Hematopoietic Kit Deficiency, rather than Lack of Mast Cells, Protects Mice from Obesity and Insulin Resistance. Cell Metabolism, 2015, 21, 678-691.	7.2	62
36	Mouse redox histology using genetically encoded probes. Science Signaling, 2016, 9, rs1.	1.6	62

#	Article	IF	CITATIONS
37	Hypoxia-inducible Lipid Droplet-associated (HILPDA) Is a Novel Peroxisome Proliferator-activated Receptor (PPAR) Target Involved in Hepatic Triglyceride Secretion. Journal of Biological Chemistry, 2014, 289, 19279-19293.	1.6	61
38	Brown Adipose Tissue Harbors a Distinct Sub-Population of Regulatory T Cells. PLoS ONE, 2015, 10, e0118534.	1.1	61
39	Control of Adipose Tissue Inflammation Through TRB1. Diabetes, 2010, 59, 1991-2000.	0.3	58
40	TSC22D4 is a molecular output of hepatic wasting metabolism. EMBO Molecular Medicine, 2013, 5, 294-308.	3.3	57
41	Nuclear receptor cofactor receptor interacting protein 140 controls hepatic triglyceride metabolism during wasting in mice. Hepatology, 2008, 48, 782-791.	3.6	54
42	miR-125b affects mitochondrial biogenesis and impairs brite adipocyte formation and function. Molecular Metabolism, 2016, 5, 615-625.	3.0	54
43	Repletion of branched chain amino acids reverses mTORC1 signaling but not improved metabolism during dietary protein dilution. Molecular Metabolism, 2017, 6, 873-881.	3.0	54
44	Aging-Dependent Reduction in Glyoxalase 1 Delays Wound Healing. Gerontology, 2013, 59, 427-437.	1.4	53
45	Glucocorticoid hormones and energy homeostasis. Hormone Molecular Biology and Clinical Investigation, 2014, 19, 117-128.	0.3	52
46	Ataxin-10 is part of a cachexokine cocktail triggering cardiac metabolic dysfunction in cancer cachexia. Molecular Metabolism, 2016, 5, 67-78.	3.0	51
47	Comparative Secretome Analyses of Primary Murine White and Brown Adipocytes Reveal Novel Adipokines. Molecular and Cellular Proteomics, 2018, 17, 2358-2370.	2.5	51
48	Common Pathological Processes and Transcriptional Pathways in Alzheimer's Disease and Type 2 Diabetes. Journal of Alzheimer's Disease, 2009, 16, 787-808.	1.2	49
49	Hepatic Deficiency in Transcriptional Cofactor TBL1 Promotes Liver Steatosis and Hypertriglyceridemia. Cell Metabolism, 2011, 13, 389-400.	7.2	49
50	Compromised <scp>DNA</scp> repair is responsible for diabetesâ€associated fibrosis. EMBO Journal, 2020, 39, e103477.	3.5	49
51	Liver alanine catabolism promotes skeletal muscle atrophy and hyperglycaemia in type 2 diabetes. Nature Metabolism, 2021, 3, 394-409.	5.1	48
52	Thermogenic adipocytes: From cells to physiology and medicine. Metabolism: Clinical and Experimental, 2014, 63, 1238-1249.	1.5	46
53	How Do Glucocorticoids Regulate Lipid Metabolism?. Advances in Experimental Medicine and Biology, 2015, 872, 127-144.	0.8	46
54	Heterodimeric Pbx-Prep1 Homeodomain Protein Binding to the Glucagon Gene Restricting Transcription in a Cell Type-dependent Manner. Journal of Biological Chemistry, 2000, 275, 27989-27999.	1.6	45

#	Article	IF	CITATIONS
55	Liver-Specific Loss of Lipolysis-Stimulated Lipoprotein Receptor Triggers Systemic Hyperlipidemia in Mice. Diabetes, 2009, 58, 1040-1049.	0.3	44
56	Molecular regulation of urea cycle function by the liver glucocorticoid receptor. Molecular Metabolism, 2015, 4, 732-740.	3.0	44
57	micro <scp>RNA</scp> â€379 couples glucocorticoid hormones to dysfunctional lipid homeostasis. EMBO Journal, 2015, 34, 344-360.	3.5	43
58	Browning of White Adipose Tissue Uncouples Glucose Uptake from Insulin Signaling. PLoS ONE, 2014, 9, e110428.	1.1	42
59	Transcriptional Cofactor TBLR1 Controls Lipid Mobilization in White Adipose Tissue. Cell Metabolism, 2013, 17, 575-585.	7.2	41
60	Jak-TGFβ cross-talk links transient adipose tissue inflammation to beige adipogenesis. Science Signaling, 2018, 11, .	1.6	41
61	Transcriptional regulation of plasminogen activator inhibitor-1 expression by insulin-like growth factor-1 via MAP kinases and hypoxia-inducible factor-1 in HepG2 cells. Thrombosis and Haemostasis, 2005, 93, 1176-1184.	1.8	38
62	PE-1/METS, an Antiproliferative Ets Repressor Factor, Is Induced by CREB-1/CREM-1 during Macrophage Differentiation. Journal of Biological Chemistry, 2004, 279, 17772-17784.	1.6	37
63	White and brown adipose stem cells: From signaling to clinical implications. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2013, 1831, 896-904.	1.2	36
64	O-GlcNAcylated p53 in the liver modulates hepatic glucose production. Nature Communications, 2021, 12, 5068.	5.8	36
65	Signal-dependent Control of Gluconeogenic Key Enzyme Genes through Coactivator-associated Arginine Methyltransferase 1. Journal of Biological Chemistry, 2006, 281, 3025-3029.	1.6	34
66	<i>In vivo</i> assessment of cold stimulation effects on the fat fraction of brown adipose tissue using DIXON MRI. Journal of Magnetic Resonance Imaging, 2017, 45, 369-380.	1.9	34
67	A macrophage-hepatocyte glucocorticoid receptor axis coordinates fasting ketogenesis. Cell Metabolism, 2022, 34, 473-486.e9.	7.2	34
68	Transcriptional Pathways in cPGI2-Induced Adipocyte Progenitor Activation for Browning. Frontiers in Endocrinology, 2015, 6, 129.	1.5	33
69	PPP2R5C Couples Hepatic Glucose and Lipid Homeostasis. PLoS Genetics, 2015, 11, e1005561.	1.5	33
70	The role of brown and beige adipose tissue in glycaemic control. Molecular Aspects of Medicine, 2019, 68, 90-100.	2.7	33
71	Fastingâ€induced liver <scp>GADD</scp> 45î² restrains hepatic fatty acid uptake and improves metabolic health. EMBO Molecular Medicine, 2016, 8, 654-669.	3.3	32
72	IP-receptor and PPARs trigger the conversion of human white to brite adipocyte induced by carbaprostacyclin. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 285-293.	1.2	31

#	Article	IF	CITATIONS
73	Hormesis enables cells to handle accumulating toxic metabolites during increased energy flux. Redox Biology, 2017, 13, 674-686.	3.9	31
74	Dietary protein dilution limits dyslipidemia in obesity through FGF21-driven fatty acid clearance. Journal of Nutritional Biochemistry, 2018, 57, 189-196.	1.9	31
75	daf-16/FOXO and glod-4/glyoxalase-1 are required for the life-prolonging effect of human insulin under high glucose conditions in Caenorhabditis elegans. Diabetologia, 2015, 58, 393-401.	2.9	30
76	A miRâ€29aâ€driven negative feedback loop regulates peripheral glucocorticoid receptor signaling. FASEB Journal, 2019, 33, 5924-5941.	0.2	30
77	Control of diabetic hyperglycaemia and insulin resistance through TSC22D4. Nature Communications, 2016, 7, 13267.	5.8	27
78	Hepatic Rab24 controls blood glucose homeostasis via improving mitochondrial plasticity. Nature Metabolism, 2019, 1, 1009-1026.	5.1	27
79	High levels of modified ceramides are a defining feature of murine and human cancer cachexia. Journal of Cachexia, Sarcopenia and Muscle, 2020, 11, 1459-1475.	2.9	26
80	Endothelial Notch signaling controls insulin transport in muscle. EMBO Molecular Medicine, 2020, 12, e09271.	3.3	23
81	Tissue-Specific Transcriptional Activity of a Pancreatic Islet Cell-Specific Enhancer Sequence/Pax6-Binding Site Determined in Normal Adult Tissues <i>in Vivo</i> Using Transgenic Mice. Molecular Endocrinology, 1999, 13, 718-728.	3.7	22
82	Orphan GPR116 mediates the insulin sensitizing effects of the hepatokine FNDC4 in adipose tissue. Nature Communications, 2021, 12, 2999.	5.8	22
83	Brown Fat Develops a <i>Brite</i> Future. Obesity Facts, 2012, 5, 890-896.	1.6	21
84	Immune cells and metabolic dysfunction. Seminars in Immunopathology, 2014, 36, 13-25.	2.8	21
85	Norepinephrine triggers an immediate-early regulatory network response in primary human white adipocytes. BMC Genomics, 2018, 19, 794.	1.2	20
86	Diabetic Pneumopathy–A New Diabetes-Associated Complication: Mechanisms, Consequences and Treatment Considerations. Frontiers in Endocrinology, 2021, 12, 765201.	1.5	20
87	Six-Month Periodic Fasting in Patients With Type 2 Diabetes and Diabetic Nephropathy: A Proof-of-Concept Study. Journal of Clinical Endocrinology and Metabolism, 2022, 107, 2167-2181.	1.8	18
88	Discovering orphans' sweet secret: NR4A receptors and hepatic glucose production. Cell Metabolism, 2006, 4, 339-340.	7.2	16
89	The glucocorticoid receptor in brown adipocytes is dispensable for control of energy homeostasis. EMBO Reports, 2019, 20, e48552.	2.0	16
90	Association of circulating PLA2G7 levels with cancer cachexia and assessment of darapladib as a therapy. Journal of Cachexia, Sarcopenia and Muscle, 2021, 12, 1333-1351.	2.9	16

#	Article	lF	CITATIONS
91	A Glyoxalase-1 Knockdown Does Not Have Major Short Term Effects on Energy Expenditure and Atherosclerosis in Mice. Journal of Diabetes Research, 2016, 2016, 1-8.	1.0	15
92	Imaging modalities for diagnosis and monitoring of cancer cachexia. EJNMMI Research, 2021, 11, 94.	1.1	14
93	Transcriptional co-factors and hepatic energy metabolism. Molecular and Cellular Endocrinology, 2011, 332, 21-31.	1.6	13
94	Transcriptional coâ€factor Transducin betaâ€like (<scp>TBL</scp>) 1 acts as a checkpoint in pancreatic cancer malignancy. EMBO Molecular Medicine, 2015, 7, 1048-1062.	3.3	12
95	Combination therapies induce cancer cell death through the integrated stress response and disturbed pyrimidine metabolism. EMBO Molecular Medicine, 2021, 13, e12461.	3.3	12
96	11β-Hydroxysteroid dehydrogenase-1 is involved in bile acid homeostasis by modulating fatty acid transport protein-5 in the liver of mice. Molecular Metabolism, 2014, 3, 554-564.	3.0	11
97	In vivo phosphoenolpyruvate carboxykinase promoter mapping identifies disrupted hormonal synergism as a target of inflammation during sepsis in mice. Hepatology, 2009, 50, 1963-1971.	3.6	10
98	Exploiting common aspects of obesity and cancer cachexia for future therapeutic strategies. Current Opinion in Pharmacology, 2020, 53, 101-116.	1.7	10
99	HAND2 is a novel obesity-linked adipogenic transcription factor regulated by glucocorticoid signalling. Diabetologia, 2021, 64, 1850-1865.	2.9	10
100	Reduction in ins-7 gene expression in non-neuronal cells of high glucose exposed Caenorhabditis elegans protects from reactive metabolites, preserves neuronal structure and head motility, and prolongs lifespan. Journal of Diabetes and Its Complications, 2017, 31, 304-310.	1.2	8
101	Effects of the Reactive Metabolite Methylglyoxal on Cellular Signalling, Insulin Action and Metabolism – What We Know in Mammals and What We Can Learn From Yeast. Experimental and Clinical Endocrinology and Diabetes, 2019, 127, 203-214.	0.6	8
102	Let's burn whatever you have: mitofusin 2 metabolically reâ€wires brown adipose tissue. EMBO Reports, 2017, 18, 1039-1040.	2.0	7
103	Endocrine and autocrine/paracrine modulators of brown adipose tissue mass and activity as novel therapeutic strategies against obesity and type 2 diabetes. Hormone Molecular Biology and Clinical Investigation, 2017, 31, .	0.3	7
104	A Hepatic GAbp-AMPK Axis Links Inflammatory Signaling to Systemic Vascular Damage. Cell Reports, 2017, 20, 1422-1434.	2.9	7
105	Cited4 is a sexâ€biased mediator of the antidiabetic glitazone response in adipocyte progenitors. EMBO Molecular Medicine, 2018, 10, .	3.3	7
106	TBL1XR1 Ensures Balanced Neural Development Through NCOR Complex-Mediated Regulation of the MAPK Pathway. Frontiers in Cell and Developmental Biology, 2021, 9, 641410.	1.8	7
107	Angpt2/Tie2 autostimulatory loop controls tumorigenesis. EMBO Molecular Medicine, 2022, 14, e14364.	3.3	7
108	Aging Aggravates Cachexia in Tumor-Bearing Mice. Cancers, 2022, 14, 90.	1.7	7

#	Article	IF	CITATIONS
109	Hepatic transforming growth factor-î² 1 stimulated clone-22 D1 controls systemic cholesterol metabolism. Molecular Metabolism, 2014, 3, 155-166.	3.0	5
110	High-glucose toxicity is mediated by AICAR-transformylase/IMP cyclohydrolase and mitigated by AMP-activated protein kinase in Caenorhabditis elegans. Journal of Biological Chemistry, 2018, 293, 4845-4859.	1.6	5
111	Lipocalin 13 enhances insulin secretion but is dispensable for systemic metabolic control. Life Science Alliance, 2021, 4, e202000898.	1.3	5
112	Elevated Expression of the RAGE Variant-V in SCLC Mitigates the Effect of Chemotherapeutic Drugs. Cancers, 2021, 13, 2843.	1.7	4
113	Adipocyte-specific tribbles pseudokinase 1 regulates plasma adiponectin and plasma lipids in mice. Molecular Metabolism, 2022, 56, 101412.	3.0	4
114	An Antibody Attack against Body Wasting in Cancer. Cell Metabolism, 2020, 32, 331-333.	7.2	3
115	Hepatocyte-specific activity of TSC22D4 triggers progressive NAFLD by impairing mitochondrial function. Molecular Metabolism, 2022, 60, 101487.	3.0	3
116	Paraneoplastic Syndromes in Pancreatic Cancer. , 2018, , 633-657.		2
117	Paraneoplastic Syndromes in Pancreatic Cancer. , 2010, , 651-673.		2
118	TSC22D4 promotes TGFÎ 2 1-induced activation of hepatic stellate cells. Biochemical and Biophysical Research Communications, 2022, 618, 46-53.	1.0	2
119	Chapter 10 Forkhead proteins and the regulation of hepatic gene expression. Advances in Molecular and Cellular Endocrinology, 2006, , 187-317.	0.1	0
120	Adipose Stem Cells. , 2013, , 19-40.		0
121	Paraneoplastic Syndromes in Pancreatic Cancer. , 2018, , 1-25.		Ο