Satyanarayana Rachagani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9072095/publications.pdf

Version: 2024-02-01

76 papers

2,996 citations

35 h-index 50 g-index

78 all docs

78 docs citations

78 times ranked 4506 citing authors

#	Article	IF	CITATIONS
1	Reduction in O-glycome induces differentially glycosylated CD44 to promote stemness and metastasis in pancreatic cancer. Oncogene, 2022, 41, 57-71.	2.6	15
2	Disruption of FDPS/Rac1 axis radiosensitizes pancreatic ductal adenocarcinoma by attenuating DNA damage response and immunosuppressive signalling. EBioMedicine, 2022, 75, 103772.	2.7	11
3	Ubiquitous Aberration in Cholesterol Metabolism across Pancreatic Ductal Adenocarcinoma. Metabolites, 2022, 12, 47.	1.3	7
4	Depletion of transmembrane mucin 4 (Muc4) alters intestinal homeostasis in a genetically engineered mouse model of colorectal cancer. Aging, 2022, 14, 2025-2046.	1.4	11
5	Hedgehog signaling and its molecular perspective with cholesterol: a comprehensive review. Cellular and Molecular Life Sciences, 2022, 79, 266.	2.4	13
6	Secretory Mucin 5AC Promotes Neoplastic Progression by Augmenting KLF4-Mediated Pancreatic Cancer Cell Stemness. Cancer Research, 2021, 81, 91-102.	0.4	39
7	Nanoscale platform for delivery of active IRINOX to combat pancreatic cancer. Journal of Controlled Release, 2021, 330, 1229-1243.	4.8	8
8	Selective inhibition of stemness through EGFR/FOXA2/SOX9 axis reduces pancreatic cancer metastasis. Oncogene, 2021, 40, 848-862.	2.6	41
9	Metabolic programming of distinct cancer stem cells promotes metastasis of pancreatic ductal adenocarcinoma. Oncogene, 2021, 40, 215-231.	2.6	53
10	Mucins, gut microbiota, and postbiotics role in colorectal cancer. Gut Microbes, 2021, 13, 1974795.	4.3	25
11	Plexin-B3 Regulates Cellular Motility, Invasiveness, and Metastasis in Pancreatic Cancer. Cancers, 2021, 13, 818.	1.7	7
12	Amyloid Precursor-like Protein 2 Expression Increases during Pancreatic Cancer Development and Shortens the Survival of a Spontaneous Mouse Model of Pancreatic Cancer. Cancers, 2021, 13, 1535.	1.7	3
13	ST6GalNAc″ promotes lung cancer metastasis by altering MUC5AC sialylation. Molecular Oncology, 2021, 15, 1866-1881.	2.1	14
14	Repurposing Niclosamide for Targeting Pancreatic Cancer by Inhibiting Hh/Gli Non-Canonical Axis of Gsk3 $\hat{1}^2$. Cancers, 2021, 13, 3105.	1.7	22
15	PGC1α-Mediated Metabolic Reprogramming Drives the Stemness of Pancreatic Precursor Lesions. Clinical Cancer Research, 2021, 27, 5415-5429.	3.2	11
16	Dual blockade of EGFR and CDK4/6 delays head and neck squamous cell carcinoma progression by inducing metabolic rewiring. Cancer Letters, 2021, 510, 79-92.	3.2	16
17	MASTL regulates EGFR signaling to impact pancreatic cancer progression. Oncogene, 2021, 40, 5691-5704.	2.6	11
18	Pancreatic Tumor Microenvironment Factor Promotes Cancer Stemness via SPP1–CD44 Axis. Gastroenterology, 2021, 161, 1998-2013.e7.	0.6	95

#	Article	IF	Citations
19	Differential gene expression-based connectivity mapping identified novel drug candidate and improved Temozolomide efficacy for Glioblastoma. Journal of Experimental and Clinical Cancer Research, 2021, 40, 335.	3.5	8
20	Nuclear factor kappa-B contributes to cigarette smoke tolerance in pancreatic ductal adenocarcinoma through cysteine metabolism. Biomedicine and Pharmacotherapy, 2021, 144, 112312.	2.5	5
21	Emerging Role of miR-345 and Its Effective Delivery as a Potential Therapeutic Candidate in Pancreatic Cancer and Other Cancers. Pharmaceutics, 2021, 13, 1987.	2.0	3
22	Irreversible and sustained upregulation of endothelin axis during oncogene-associated pancreatic inflammation and cancer. Neoplasia, 2020, 22, 98-110.	2.3	16
23	RNA Polymerase II-Associated Factor 1 Regulates Stem Cell Features of Pancreatic Cancer Cells, Independently of the PAF1 Complex, via Interactions With PHF5A and DDX3. Gastroenterology, 2020, 159, 1898-1915.e6.	0.6	33
24	Acinar transformed ductal cells exhibit differential mucin expression in a tamoxifen-induced pancreatic ductal adenocarcinoma mouse model. Biology Open, 2020, 9, .	0.6	5
25	CXCR2 signaling promotes secretory cancerâ€essociated fibroblasts in pancreatic ductal adenocarcinoma. FASEB Journal, 2020, 34, 9405-9418.	0.2	43
26	Sildenafil Potentiates the Therapeutic Efficacy of Docetaxel in Advanced Prostate Cancer by Stimulating NO-cGMP Signaling. Clinical Cancer Research, 2020, 26, 5720-5734.	3.2	28
27	Global analysis of human glycosyltransferases reveals novel targets for pancreatic cancer pathogenesis. British Journal of Cancer, 2020, 122, 1661-1672.	2.9	30
28	Mechanistic and Functional Shades of Mucins and Associated Glycans in Colon Cancer. Cancers, 2020, 12, 649.	1.7	37
29	Molecular implications of MUC5AC-CD44 axis in colorectal cancer progression and chemoresistance. Molecular Cancer, 2020, 19, 37.	7.9	85
30	Comparative Study of Subcutaneous and Orthotopic Mouse Models of Prostate Cancer: Vascular Perfusion, Vasculature Density, Hypoxic Burden and BB2r-Targeting Efficacy. Scientific Reports, 2019, 9, 11117.	1.6	35
31	Afatinib and Temozolomide combination inhibits tumorigenesis by targeting EGFRvIII-cMet signaling in glioblastoma cells. Journal of Experimental and Clinical Cancer Research, 2019, 38, 266.	3.5	81
32	FDPS cooperates with PTEN loss to promote prostate cancer progression through modulation of small GTPases/AKT axis. Oncogene, 2019, 38, 5265-5280.	2.6	41
33	Trefoil factor(s) and CA19.9: A promising panel for early detection of pancreatic cancer. EBioMedicine, 2019, 42, 375-385.	2.7	24
34	Dual delivery nanoscale device for miR-345 and gemcitabine co-delivery to treat pancreatic cancer. Journal of Controlled Release, 2019, 294, 237-246.	4.8	38
35	Novel therapies hijack the blood–brain barrier to eradicate glioblastoma cancer stem cells. Carcinogenesis, 2019, 40, 2-14.	1.3	12
36	Enhancing responsiveness of pancreatic cancer cells to gemcitabine treatment under hypoxia by heme oxygenase-1 inhibition. Translational Research, 2019, 207, 56-69.	2.2	35

#	Article	IF	CITATIONS
37	MicroRNA regulation of K-Ras in pancreatic cancer and opportunities for therapeutic intervention. Seminars in Cancer Biology, 2019, 54, 63-71.	4.3	42
38	Pathological and functional significance of Semaphorin-5A in pancreatic cancer progression and metastasis. Oncotarget, 2018, 9, 5931-5943.	0.8	22
39	Novel role of O-glycosyltransferases GALNT3 and B3GNT3 in the self-renewal of pancreatic cancer stem cells. BMC Cancer, 2018, 18, 1157.	1.1	36
40	Pancreatic cancer associated with obesity and diabetes: an alternative approach for its targeting. Journal of Experimental and Clinical Cancer Research, 2018, 37, 319.	3.5	81
41	Disruption of C1galt1 Gene Promotes Development and Metastasis of Pancreatic Adenocarcinomas in Mice. Gastroenterology, 2018, 155, 1608-1624.	0.6	59
42	Axed MUC4 (MUC4/X) aggravates pancreatic malignant phenotype by activating integrin- $\hat{1}^21$ /FAK/ERK pathway. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 2538-2549.	1.8	28
43	Cigarette Smoke Induces Stem Cell Features of Pancreatic Cancer Cells via PAF1. Gastroenterology, 2018, 155, 892-908.e6.	0.6	70
44	MUC16 Regulates TSPYL5 for Lung Cancer Cell Growth and Chemoresistance by Suppressing p53. Clinical Cancer Research, 2017, 23, 3906-3917.	3.2	64
45	Afatinib radiosensitizes head and neck squamous cell carcinoma cells by targeting cancer stem cells. Oncotarget, 2017, 8, 20961-20973.	0.8	41
46	Mouse Model of Dextran Sodium Sulfate (DSS)-induced Colitis. Bio-protocol, 2017, 7, e2515.	0.2	11
47	MUC16 contributes to the metastasis of pancreatic ductal adenocarcinoma through focal adhesion mediated signaling mechanism. Genes and Cancer, 2016, 7, 110-124.	0.6	65
48	Polyplex-mediated inhibition of chemokine receptor CXCR4 and chromatin-remodeling enzyme NCOA3 impedes pancreatic cancer progression and metastasis. Biomaterials, 2016, 101, 108-120.	5.7	26
49	Bile acidsâ€mediated overexpression of MUC4 via FAKâ€dependent câ€Jun activation in pancreatic cancer. Molecular Oncology, 2016, 10, 1063-1077.	2.1	23
50	Mucins and Wnt/ \hat{l}^2 -catenin signaling in gastrointestinal cancers: an unholy nexus. Carcinogenesis, 2016, 37, 223-232.	1.3	52
51	PR55α Subunit of Protein Phosphatase 2A Supports the Tumorigenic and Metastatic Potential of Pancreatic Cancer Cells by Sustaining Hyperactive Oncogenic Signaling. Cancer Research, 2016, 76, 2243-2253.	0.4	51
52	Biomarkers for glioblastoma: MMP2 and NGAL Journal of Clinical Oncology, 2016, 34, e13516-e13516.	0.8	6
53	Overexpression of PD2 leads to increased tumorigenicity and metastasis in pancreatic ductal adenocarcinoma. Oncotarget, 2016, 7, 3317-3331.	0.8	19
54	CXCR2 signaling regulates <i>KRAS(G12D)</i> induced autocrine growth of pancreatic cancer. Oncotarget, 2016, 7, 7280-7296.	0.8	39

#	Article	IF	CITATIONS
55	Membrane proximal ectodomain cleavage of MUC16 occurs in the acidifyingGolgi/post-Golgi compartments. Scientific Reports, 2015, 5, 9759.	1.6	42
56	Changes in microRNA (miRNA) expression during pancreatic cancer development and progression in a genetically engineered KrasG12D;Pdx1-Cre mouse (KC) model. Oncotarget, 2015, 6, 40295-40309.	0.8	46
57	Genetically engineered mucin mouse models for inflammation and cancer. Cancer and Metastasis Reviews, 2015, 34, 593-609.	2.7	23
58	Pathobiological implications of mucin glycans in cancer: Sweet poison and novel targets. Biochimica Et Biophysica Acta: Reviews on Cancer, 2015, 1856, 211-225.	3.3	58
59	Clinical implications of miRNAs in the pathogenesis, diagnosis and therapy of pancreatic cancer. Advanced Drug Delivery Reviews, 2015, 81, 16-33.	6.6	89
60	Inhibition of hedgehog signaling improves the anti-carcinogenic effects of docetaxel in prostate cancer. Oncotarget, 2015, 6, 3887-3903.	0.8	37
61	Amyloid precursor-like protein 2 (APLP2) affects the actin cytoskeleton and increases pancreatic cancer growth and metastasis. Oncotarget, 2015, 6, 2064-2075.	0.8	26
62	Targeting EGF-receptor(s) - STAT1 axis attenuates tumor growth and metastasis through downregulation of MUC4 mucin in human pancreatic cancer. Oncotarget, 2015, 6, 5164-5181.	0.8	42
63	Carboxyl-terminal domain of MUC16 imparts tumorigenic and metastatic functions through nuclear translocation of JAK2 to pancreatic cancer cells. Oncotarget, 2015, 6, 5772-5787.	0.8	66
64	Novel HER3/MUC4 oncogenic signaling aggravates the tumorigenic phenotypes of pancreatic cancer cells. Oncotarget, 2015, 6, 21085-21099.	0.8	31
65	Significance of microRNA-based biomarkers for pancreatic cancer. Annals of Translational Medicine, 2015, 3, 277.	0.7	7
66	PD2/Paf1 depletion in pancreatic acinar cells promotes acinar-to-ductal metaplasia. Oncotarget, 2014, 5, 4480-4491.	0.8	28
67	MicroRNAs (miRNAs) as Biomarker(s) for Prognosis and Diagnosis of Gastrointestinal (GI) Cancers. Current Pharmaceutical Design, 2014, 20, 5287-5297.	0.9	71
68	Smoking and microRNA dysregulation: a cancerous combination. Trends in Molecular Medicine, 2014, 20, 36-47.	3.5	65
69	Novel Pancreatic Cancer Cell Lines Derived from Genetically Engineered Mouse Models of Spontaneous Pancreatic Adenocarcinoma: Applications in Diagnosis and Therapy. PLoS ONE, 2013, 8, e80580.	1.1	109
70	Prospects of miRNA-Based Therapy for Pancreatic Cancer. Current Drug Targets, 2013, 14, 1101-1109.	1.0	38
71	Mucin (Muc) expression during pancreatic cancer progression in spontaneous mouse model: potential implications for diagnosis and therapy. Journal of Hematology and Oncology, 2012, 5, 68.	6.9	65
72	MUC4 potentiates invasion and metastasis of pancreatic cancer cells through stabilization of fibroblast growth factor receptor 1. Carcinogenesis, 2012, 33, 1953-1964.	1.3	76

#	Article	IF	CITATIONS
73	Pathobiological Implications of MUC16 Expression in Pancreatic Cancer. PLoS ONE, 2011, 6, e26839.	1.1	113
74	MicroRNA in pancreatic cancer: Pathological, diagnostic and therapeutic implications. Cancer Letters, 2010, 292, 8-16.	3.2	86
75	RNA Polymerase II Associated Factor 1/PD2 Maintains Self-Renewal by Its Interaction with Oct3/4 in Mouse Embryonic Stem Cells. Stem Cells, 2009, 27, 3001-3011.	1.4	48
76	Current status of mucins in the diagnosis and therapy of cancer. BioFactors, 2009, 35, 509-527.	2.6	128