Helge Ewers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9071417/publications.pdf Version: 2024-02-01

HELCE EWEDS

#	Article	IF	CITATIONS
1	GM1 structure determines SV40-induced membrane invagination and infection. Nature Cell Biology, 2010, 12, 11-18.	10.3	535
2	A simple, versatile method for GFP-based super-resolution microscopy via nanobodies. Nature Methods, 2012, 9, 582-584.	19.0	508
3	High-speed nanoscopic tracking of the position and orientation of a single virus. Nature Methods, 2009, 6, 923-927.	19.0	328
4	The 2015 super-resolution microscopy roadmap. Journal Physics D: Applied Physics, 2015, 48, 443001.	2.8	291
5	Activity-Dependent Gating of Parvalbumin Interneuron Function by the Perineuronal Net Protein Brevican. Neuron, 2017, 95, 639-655.e10.	8.1	271
6	Single-particle tracking of murine polyoma virus-like particles on live cells and artificial membranes. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 15110-15115.	7.1	235
7	Resolving bundled microtubules using anti-tubulin nanobodies. Nature Communications, 2015, 6, 7933.	12.8	174
8	Binding-Activated Localization Microscopy of DNA Structures. Nano Letters, 2011, 11, 4008-4011.	9.1	165
9	Lipid-Mediated Endocytosis. Cold Spring Harbor Perspectives in Biology, 2011, 3, a004721-a004721.	5.5	154
10	<i>N</i> -Glycolyl GM1 Ganglioside as a Receptor for Simian Virus 40. Journal of Virology, 2007, 81, 12846-12858.	3.4	150
11	Expansion Stimulated Emission Depletion Microscopy (ExSTED). ACS Nano, 2018, 12, 4178-4185.	14.6	148
12	Human Papillomavirus Type 16 Entry: Retrograde Cell Surface Transport along Actin-Rich Protrusions. PLoS Pathogens, 2008, 4, e1000148.	4.7	136
13	mMaple: A Photoconvertible Fluorescent Protein for Use in Multiple Imaging Modalities. PLoS ONE, 2012, 7, e51314.	2.5	125
14	Unblending of Transcriptional Condensates in Human Repeat Expansion Disease. Cell, 2020, 181, 1062-1079.e30.	28.9	115
15	High-Speed Single-Particle Tracking of GM1 in Model Membranes Reveals Anomalous Diffusion due to Interleaflet Coupling and Molecular Pinning. Nano Letters, 2014, 14, 5390-5397.	9.1	104
16	Ankyrin-Dependent and -Independent Mechanisms Orchestrate Axonal Compartmentalization of L1 Family Members Neurofascin and L1/Neuron-Glia Cell Adhesion Molecule. Journal of Neuroscience, 2007, 27, 590-603.	3.6	99
17	Nanoscopic compartmentalization of membrane protein motion at the axon initial segment. Journal of Cell Biology, 2016, 215, 37-46.	5.2	99
18	A Septin-Dependent Diffusion Barrier at Dendritic Spine Necks. PLoS ONE, 2014, 9, e113916.	2.5	86

HELGE EWERS

#	Article	IF	CITATIONS
19	Superresolution Imaging of Amyloid Fibrils with Binding-Activated Probes. ACS Chemical Neuroscience, 2013, 4, 1057-1061.	3.5	75
20	Nanoscale Structural Plasticity of the Active Zone Matrix Modulates Presynaptic Function. Cell Reports, 2017, 18, 2715-2728.	6.4	69
21	Label-Free Optical Detection and Tracking of Single Virions Bound to Their Receptors in Supported Membrane Bilayers. Nano Letters, 2007, 7, 2263-2266.	9.1	67
22	Probing the Dynamics of Protein–Protein Interactions at Neuronal Contacts by Optical Imaging. Chemical Reviews, 2008, 108, 1565-1587.	47.7	56
23	Even illumination in total internal reflection fluorescence microscopy using laser light. Microscopy Research and Technique, 2008, 71, 45-50.	2.2	54
24	Live-Cell Super-resolution Reveals F-Actin and Plasma Membrane Dynamics at the T Cell Synapse. Biophysical Journal, 2017, 112, 1703-1713.	0.5	54
25	Single-molecule microscopy of molecules tagged with GFP or RFP derivatives in mammalian cells using nanobody binders. Methods, 2015, 88, 89-97.	3.8	46
26	Receptor Concentration and Diffusivity Control Multivalent Binding of Sv40 to Membrane Bilayers. PLoS Computational Biology, 2013, 9, e1003310.	3.2	44
27	Live-cell imaging of circadian clock protein dynamics in CRISPR-generated knock-in cells. Nature Communications, 2021, 12, 3796.	12.8	42
28	Single event visualization of unconventional secretion of FGF2. Journal of Cell Biology, 2019, 218, 683-699.	5.2	39
29	Single Particle Tracking of α7 Nicotinic AChR in Hippocampal Neurons Reveals Regulated Confinement at Glutamatergic and GABAergic Perisynaptic Sites. PLoS ONE, 2010, 5, e11507.	2.5	39
30	The Bacterial SMC Complex Displays Two Distinct Modes of Interaction with the Chromosome. Cell Reports, 2013, 3, 1483-1492.	6.4	36
31	A Simple Method for GFP- and RFP-based Dual Color Single-Molecule Localization Microscopy. ACS Chemical Biology, 2015, 10, 1411-1416.	3.4	36
32	Dual-Color 3D Superresolution Microscopy by Combined Spectral-Demixing and Biplane Imaging. Biophysical Journal, 2015, 109, 3-6.	0.5	35
33	Revealing Compartmentalized Diffusion in Living Cells with Interferometric Scattering Microscopy. Biophysical Journal, 2018, 114, 2945-2950.	0.5	35
34	Rapid and efficient C-terminal labeling of nanobodies for DNA-PAINT. Journal Physics D: Applied Physics, 2018, 51, 474005.	2.8	32
35	Cells Undergo Major Changes in the Quantity of Cytoplasmic Organelles after Uptake of Gold Nanoparticles with Biologically Relevant Surface Coatings. ACS Nano, 2020, 14, 2248-2264.	14.6	31
36	Dual color single particle tracking via nanobodies. Methods and Applications in Fluorescence, 2015, 3, 024001.	2.3	30

Helge Ewers

#	Article	IF	CITATIONS
37	Absolute Arrangement of Subunits in Cytoskeletal Septin Filaments in Cells Measured by Fluorescence Microscopy. Nano Letters, 2015, 15, 3859-3864.	9.1	28
38	Directed manipulation of membrane proteins by fluorescent magnetic nanoparticles. Nature Communications, 2020, 11, 4259.	12.8	27
39	Automated suppression of sample-related artifacts in Fluorescence Correlation Spectroscopy. Optics Express, 2010, 18, 11073.	3.4	26
40	Optimized sample preparation for single-molecule localization-based superresolution microscopy in yeast. Nature Protocols, 2015, 10, 1007-1021.	12.0	26
41	Left-handed DNA-PAINT for improved super-resolution imaging in the nucleus. Nature Biotechnology, 2021, 39, 551-554.	17.5	25
42	Singleâ€Molecule Localization Microscopy using mCherry. ChemPhysChem, 2014, 15, 3447-3451.	2.1	23
43	The Na,K-ATPase acts upstream of phosphoinositide PI(4,5)P2 facilitating unconventional secretion of Fibroblast Growth Factor 2. Communications Biology, 2020, 3, 141.	4.4	21
44	Inhibition of sphingolipid synthesis affects kinetics but not fidelity of L1/NgCAM transport along direct but not transcytotic axonal pathways. Molecular and Cellular Neurosciences, 2006, 31, 525-538.	2.2	20
45	Functional Redundancy of Septin Homologs in Dendritic Branching. Frontiers in Cell and Developmental Biology, 2017, 5, 11.	3.7	17
46	Tetraspanin-3 is an organizer of the multi-subunit Nogo-A signaling complex. Journal of Cell Science, 2015, 128, 3583-96.	2.0	16
47	Analysis of Virus Entry and Cellular Membrane Dynamics by Single Particle Tracking. Methods in Enzymology, 2012, 506, 63-80.	1.0	15
48	Glypican-1 drives unconventional secretion of fibroblast growth factor 2. ELife, 2022, 11, .	6.0	15
49	Expansion microscopy passes its first test. Nature Methods, 2016, 13, 481-482.	19.0	13
50	A homozygous genomeâ€edited Sept2â€EGFP fibroblast cell line. Cytoskeleton, 2019, 76, 73-82.	2.0	8
51	Membrane deformation by the cholera toxin beta subunit requires more than one binding site. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 17467-17469.	7.1	8
52	Actomyosin Contractility in the Generation and Plasticity of Axons and Dendritic Spines. Cells, 2020, 9, 2006.	4.1	7
53	Expansion STED microscopy (ExSTED). Methods in Cell Biology, 2021, 161, 15-31.	1.1	7
54	The synaptic scaffold protein MPP2 interacts with GABAA receptors at the periphery of the postsynaptic density of glutamatergic synapses. PLoS Biology, 2022, 20, e3001503.	5.6	6

HELGE EWERS

#	Article	IF	CITATIONS
55	Septin pairs, a complex choreography. Journal of Cell Biology, 2011, 193, 959-961.	5.2	3
56	Nano Resolution Optical Imaging Through Localization Microscopy. , 2012, , 81-100.		3
57	Open-source recombinant monoclonal secondary nanobodies. Journal of Cell Biology, 2018, 217, 809-811.	5.2	3
58	Directed Manipulation of Membrane Proteins by Fluorescent Magnetic Nanoparticles. Biophysical Journal, 2020, 118, 313a.	0.5	3
59	Precise measurement of nanoscopic septin ring structures with deep learning-assisted quantitative superresolution microscopy. Molecular Biology of the Cell, 2022, 33, mbcE22020039.	2.1	3
60	A Simple, Versatile Method for GFP-Based Single Molecule Localization Microscopy. Biophysical Journal, 2012, 102, 419a.	0.5	2
61	Ashbya gossypii as a model system to study septin organization by single-molecule localization microscopy. Methods in Cell Biology, 2016, 136, 161-182.	1.1	2
62	Anchoring, Sliding, And Rolling: Visualizing The Three-dimensional Nano-motion And Orientation Of A Single Virus As It Diffuses On A Flat Membrane. Biophysical Journal, 2009, 96, 557a.	0.5	0
63	Binding-Activated Localization Microscopy of DNA Structures. Biophysical Journal, 2012, 102, 419a.	0.5	Ο
64	Novel Labeling Schemes for Single-Molecule Localization Microscopy. Biophysical Journal, 2013, 104, 8a-9a.	0.5	0
65	Segmentation of Membrane Protein Motion in the Axon Initial Segment. Biophysical Journal, 2016, 110, 579a.	0.5	0
66	Editorial overview: The molecular and cellular biology of septins. Cytoskeleton, 2019, 76, 5-6.	2.0	0
67	A Novel Photoconvertible Protein for Accurate Single Molecule Counting. Biophysical Journal, 2020, 118, 312a.	0.5	0
68	An Efficient GUI-Based Clustering Software for Simulation and Bayesian Cluster Analysis of Single-Molecule Localization Microscopy Data. Frontiers in Bioinformatics, 2021, 1, .	2.1	0