Yanjie Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9071272/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Native woody legumes respond more negatively to extreme drought than invasive ones. Journal of Plant Ecology, 2022, 15, 485-493.	1.2	7
2	Invasive herbaceous respond more negatively to elevated ozone concentration than native species. Diversity and Distributions, 2022, 28, 189-196.	1.9	6
3	The Matthew effect: Common species become more common and rare ones become more rare in response to artificial light at night. Global Change Biology, 2022, 28, 3674-3682.	4.2	11
4	Herbivory may mediate the effects of nutrients on the dominance of alien plants. Functional Ecology, 2022, 36, 1292-1302.	1.7	10
5	Soil mesofauna may buffer the negative effects of drought on alien plant invasion. Journal of Ecology, 2022, 110, 2332-2342.	1.9	10
6	Effect of allelopathy on plant performance: a metaâ€analysis. Ecology Letters, 2021, 24, 348-362.	3.0	133
7	Biomass responses of widely and lessâ€widely naturalized alien plants to artificial light at night. Journal of Ecology, 2021, 109, 1819-1827.	1.9	21
8	Suppression of a plant hormone gibberellin reduces growth of invasive plants more than native plants. Oikos, 2021, 130, 781-789.	1.2	9
9	Soil-microorganism-mediated invasional meltdown in plants. Nature Ecology and Evolution, 2020, 4, 1612-1621.	3.4	50
10	Evidence for Elton's diversity–invasibility hypothesis from belowground. Ecology, 2020, 101, e03187.	1.5	23
11	Nitrogen acquisition of Central European herbaceous plants that differ in their global naturalization success. Functional Ecology, 2019, 33, 566-575.	1.7	15
12	The effects of changes in water and nitrogen availability on alien plant invasion into a stand of a native grassland species. Oecologia, 2018, 188, 441-450.	0.9	28
13	Increases and fluctuations in nutrient availability do not promote dominance of alien plants in synthetic communities of common natives. Functional Ecology, 2018, 32, 2594-2604.	1.7	33
14	Responses of common and rare aliens and natives to nutrient availability and fluctuations. Journal of Ecology, 2017, 105, 1111-1122.	1.9	78
15	Effects of nitrogen addition and mowing on reproductive phenology of three early-flowering forb species in a Tibetan alpine meadow. Ecological Engineering, 2017, 99, 119-125.	1.6	31
16	Do invasive alien plants benefit more from global environmental change than native plants?. Global Change Biology, 2017, 23, 3363-3370.	4.2	226
17	How Will Global Environmental Changes Affect the Growth of Alien Plants?. Frontiers in Plant Science, 2016, 7, 1623.	1.7	37
18	Does greater specific leaf area plasticity help plants to maintain a high performance when shaded?. Annals of Botany, 2016, 118, 1329-1336.	1.4	100

Yanjie Liu

#	Article	IF	CITATIONS
19	Understanding the wide geographic range of a clonal perennial grass: plasticity versus local adaptation. AoB PLANTS, 2015, 8, plv141.	1.2	12
20	Effects of sampling method on foliar <i>î´</i> ¹³ C of <i>Leymus chinensis</i> at different scales. Ecology and Evolution, 2015, 5, 1068-1075.	0.8	4
21	Habitatâ€specific differences in plasticity of foliar δ13 C in temperate steppe grasses. Ecology and Evolution, 2014, 4, 648-655.	0.8	6
22	Foliar δ ¹³ C response patterns along a moisture gradient arising from genetic variation and phenotypic plasticity in grassland species of Inner Mongolia. Ecology and Evolution, 2013, 3, 262-267.	0.8	8