## Eric Buhler

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9070341/publications.pdf

Version: 2024-02-01

185998 189595 2,543 54 28 50 citations h-index g-index papers 58 58 58 3062 docs citations times ranked citing authors all docs

| #  | Article                                                                                                                                                                                                     | IF  | Citations |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Self-Induced Crystallization in Charged Gold Nanoparticle-Semiflexible Biopolyelectrolyte Complexes.<br>Langmuir, 2020, 36, 7925-7932.                                                                      | 1.6 | 5         |
| 2  | Structural properties of contractile gels based on light-driven molecular motors: a small-angle neutron and X-ray study. Soft Matter, 2020, 16, 4008-4023.                                                  | 1.2 | 6         |
| 3  | Homodyne dynamic light scattering in supramolecular polymer solutions: anomalous oscillations in intensity correlation function. Soft Matter, 2020, 16, 2971-2993.                                          | 1.2 | 1         |
| 4  | pH-Dependent morphology and optical properties of lysine-derived molecular biodynamers. Materials Chemistry Frontiers, 2020, 4, 905-909.                                                                    | 3.2 | 4         |
| 5  | Mechanical behaviour of contractile gels based on light-driven molecular motors. Nanoscale, 2019, 11, 5197-5202.                                                                                            | 2.8 | 23        |
| 6  | Lipidâ€ĐNAs as Solubilizers of <i>m</i> THPC. Chemistry - A European Journal, 2018, 24, 798-802.                                                                                                            | 1.7 | 5         |
| 7  | Dynamic Proteoids Generated From Dipeptideâ€Based Monomers. Macromolecular Rapid Communications, 2018, 39, e1800099.                                                                                        | 2.0 | 2         |
| 8  | Autopoietic Behavior of Dynamic Covalent Amphiphiles. Chemistry - A European Journal, 2018, 24, 17125-17137.                                                                                                | 1.7 | 4         |
| 9  | 3D supramolecular self-assembly of [60]fullerene hexaadducts decorated with triarylamine molecules. Chemical Communications, 2018, 54, 7657-7660.                                                           | 2.2 | 8         |
| 10 | Controlled Sol–Gel Transitions by Actuating Molecular Machine Based Supramolecular Polymers.<br>Journal of the American Chemical Society, 2017, 139, 4923-4928.                                             | 6.6 | 117       |
| 11 | Saccharideâ€Containing Dynamic Proteoids. Chemistry - A European Journal, 2017, 23, 16162-16166.                                                                                                            | 1.7 | 5         |
| 12 | Bistable [ <i>c</i> 2] Daisy Chain Rotaxanes as Reversible Muscle-like Actuators in Mechanically Active Gels. Journal of the American Chemical Society, 2017, 139, 14825-14828.                             | 6.6 | 112       |
| 13 | Integration of molecular machines into supramolecular materials: actuation between equilibrium polymers and crystal-like gels. Nanoscale, 2017, 9, 18456-18466.                                             | 2.8 | 15        |
| 14 | How does the size of gold nanoparticles depend on citrate to gold ratio in Turkevich synthesis? Final answer to a debated question. Journal of Colloid and Interface Science, 2017, 492, 191-198.           | 5.0 | 58        |
| 15 | Role of the ratio of biopolyelectrolyte persistence length to nanoparticle size in the structural tuning of electrostatic complexes. Physical Review E, 2016, 94, 032504.                                   | 0.8 | 15        |
| 16 | Proteoid Dynamers with Tunable Properties. Advanced Functional Materials, 2016, 26, 6297-6305.                                                                                                              | 7.8 | 14        |
| 17 | Hierarchical Selfâ€Assembly of Supramolecular Muscle‣ike Fibers. Angewandte Chemie - International Edition, 2016, 55, 703-707.                                                                              | 7.2 | 91        |
| 18 | An Easily Accessible Selfâ€Healing Transparent Film Based on a 2D Supramolecular Network of Hydrogenâ€Bonding Interactions between Polymeric Chains. Chemistry - A European Journal, 2016, 22, 13513-13520. | 1.7 | 23        |

| #  | Article                                                                                                                                                                                             | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Light Scattering Strategy for the Investigation of Time-Evolving Heterogeneous Supramolecular Self-Assemblies. Physical Review Letters, 2015, 115, 085501.                                          | 2.9 | 13        |
| 20 | Hydrogen-Bonded Multifunctional Supramolecular Copolymers in Water. Langmuir, 2015, 31, 7738-7748.                                                                                                  | 1.6 | 7         |
| 21 | Shape-Tailored Colloidal Molecules Obtained by Self-Assembly of Model Gold Nanoparticles with Flexible Polyelectrolyte. Langmuir, 2015, 31, 5731-5737.                                              | 1.6 | 10        |
| 22 | Multivalency by Selfâ€Assembly: Binding of Concanavalinâ€A to Metallosupramolecular Architectures Decorated with Multiple Carbohydrate Groups. Chemistry - A European Journal, 2014, 20, 6960-6977. | 1.7 | 33        |
| 23 | Double dynamic self-healing polymers: supramolecular and covalent dynamic polymers based on the bis-iminocarbohydrazide motif. Polymer International, 2014, 63, 1400-1405.                          | 1.6 | 95        |
| 24 | Supramolecular Self-Assembly and Radical Kinetics in Conducting Self-Replicating Nanowires. ACS Nano, 2014, 8, 10111-10124.                                                                         | 7.3 | 55        |
| 25 | Control over the electrostatic self-assembly of nanoparticle semiflexible biopolyelectrolyte complexes. Soft Matter, 2013, 9, 5004.                                                                 | 1.2 | 26        |
| 26 | Generation of supramolecular microcapsules by oxidative covalent polymerization of a ditopic supramolecular building block. Polymer Chemistry, 2013, 4, 2949.                                       | 1.9 | 28        |
| 27 | Double Dynamic Supramolecular Polymers of Covalent Oligo-Dynamers. Macromolecules, 2013, 46, 5664-5671.                                                                                             | 2.2 | 23        |
| 28 | The Trisâ€Urea Motif and Its Incorporation into Polydimethylsiloxaneâ€Based Supramolecular Materials Presenting Selfâ€Healing Features. Chemistry - A European Journal, 2013, 19, 8814-8820.        | 1.7 | 52        |
| 29 | Muscleâ€like Supramolecular Polymers: Integrated Motion from Thousands of Molecular Machines.<br>Angewandte Chemie - International Edition, 2012, 51, 12504-12508.                                  | 7.2 | 215       |
| 30 | Structural Properties of Colloidal Complexes between Condensed Tannins and Polysaccharide Hyaluronan. Biomacromolecules, 2012, 13, 751-759.                                                         | 2.6 | 43        |
| 31 | Nanorods of Well-Defined Length and Monodisperse Cross-Section Obtained from Electrostatic Complexation of Nanoparticles with a Semiflexible Biopolymer. ACS Macro Letters, 2012, 1, 857-861.       | 2.3 | 13        |
| 32 | Light-triggered self-assembly of triarylamine-based nanospheres. Nanoscale, 2012, 4, 6748.                                                                                                          | 2.8 | 21        |
| 33 | Biopolymer folding driven nanoparticle reorganization in bio-nanocomposites. Soft Matter, 2012, 8, 2930.                                                                                            | 1.2 | 19        |
| 34 | Biodynamers: Self-Organization-Driven Formation of Doubly Dynamic Proteoids. Journal of the American Chemical Society, 2012, 134, 4177-4183.                                                        | 6.6 | 54        |
| 35 | Hierarchical supramolecular structuring and dynamical properties of water soluble polyethylene glycol–perylene self-assemblies. Physical Chemistry Chemical Physics, 2012, 14, 5718.                | 1.3 | 13        |
| 36 | SANS, SAXS, and light scattering investigations of pH-responsive dynamic combinatorial mesophases. Soft Matter, 2011, 7, 4787.                                                                      | 1.2 | 23        |

| #  | Article                                                                                                                                                                                                                         | IF                | CITATIONS  |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------|
| 37 | The Hierarchical Selfâ€Assembly of Charge Nanocarriers: A Highly Cooperative Process Promoted by Visible Light. Angewandte Chemie - International Edition, 2010, 49, 6974-6978.                                                 | 7.2               | 114        |
| 38 | Cooperative, bottomâ€up generation of rigidâ€rod nanostructures through dynamic polymer chemistry. Polymer International, 2010, 59, 1477-1491.                                                                                  | 1.6               | 23         |
| 39 | Glycodynamers: Dynamic Polymers Bearing Oligosaccharides Residues â° Generation, Structure, Physicochemical, Component Exchange, and Lectin Binding Properties. Journal of the American Chemical Society, 2010, 132, 2573-2584. | 6.6               | 111        |
| 40 | Dynamic Combinatorial Evolution within Selfâ€Replicating Supramolecular Assemblies. Angewandte Chemie - International Edition, 2009, 48, 1093-1096.                                                                             | 7.2               | 165        |
| 41 | Reversible constitutional switching between macrocycles and polymers induced by shape change in a dynamic covalent system. New Journal of Chemistry, 2009, 33, 271.                                                             | 1.4               | 58         |
| 42 | Dynablocks: Structural Modulation of Responsive Combinatorial Self-Assemblies at Mesoscale. Macromolecules, 2009, 42, 5913-5915.                                                                                                | 2.2               | 35         |
| 43 | Dynamical properties of semidilute solutions of hydrogen-bonded supramolecular polymers. Physical Review E, 2007, 76, 061804.                                                                                                   | 0.8               | 23         |
| 44 | Modulation of the Supramolecular Structure of G-Quartet Assemblies by Dynamic Covalent Decoration. Journal of the American Chemical Society, 2007, 129, 10058-10059.                                                            | 6.6               | 45         |
| 45 | Ammonium lithocholate nanotubes: stability and copper metallization. Soft Matter, 2006, 2, 517.                                                                                                                                 | 1.2               | 26         |
| 46 | Self-Diffusion and Collective Diffusion of Charged Colloids Studied by Dynamic Light Scattering. Journal of Physical Chemistry B, 2005, 109, 13186-13194.                                                                       | 1.2               | 48         |
| 47 | Chain Persistence Length and Structure in Hyaluronan Solutions:Â lonic Strength Dependence for a Model Semirigid Polyelectrolyte. Macromolecules, 2004, 37, 1600-1610.                                                          | 2.2               | 106        |
| 48 | Structural and Rheological Properties of Hydrophobically Modified Polysaccharide Associative Networks. Langmuir, 2004, 20, 3583-3592.                                                                                           | 1.6               | 81         |
| 49 | Structural and Morphological Diversity of (1→3)-β-d-Glucans Synthesizedin Vitroby Enzymes fromSaprolegnia monoÃ-ca. Comparison with a Correspondingin VitroProduct from Blackberry (Rubus) Tj ETQq1 I                           | 1 <b>0</b> 2/8431 | 44gBT /Ove |
| 50 | Microtubule Nucleation from Stable Tubulin Oligomers. Journal of Biological Chemistry, 2002, 277, 50973-50979.                                                                                                                  | 1.6               | 23         |
| 51 | PREDICTIVE AND EXPERIMENTAL BEHAVIOUR OF HYALURONAN IN SOLUTION AND SOLID STATE. , 2002, , 37-46.                                                                                                                               |                   | 10         |
| 52 | Aggregation Behavior in Semidilute Rigid and Semirigid Polysaccharide Solutions. Macromolecules, 2002, 35, 3708-3716.                                                                                                           | 2.2               | 43         |
| 53 | Phase Behavior of Associating Polyelectrolyte Polysaccharides. 1. Aggregation Process in Dilute Solution. Macromolecules, 2001, 34, 5287-5294.                                                                                  | 2.2               | 71         |
| 54 | Structural and Dynamical Properties of Semirigid Polyelectrolyte Solutions:Â A Light-Scattering Study. Macromolecules, 2000, 33, 2098-2106.                                                                                     | 2.2               | 91         |