Jeffery A Steevens

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9070298/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Are harmful algal blooms becoming the greatest inland water quality threat to public health and aquatic ecosystems?. Environmental Toxicology and Chemistry, 2016, 35, 6-13.	2.2	380
2	Ecotoxicity test methods for engineered nanomaterials: Practical experiences and recommendations from the bench. Environmental Toxicology and Chemistry, 2012, 31, 15-31.	2.2	273
3	Risk-based classification system of nanomaterials. Journal of Nanoparticle Research, 2009, 11, 757-766.	0.8	178
4	Factors influencing the partitioning and toxicity of nanotubes in the aquatic environment. Environmental Toxicology and Chemistry, 2008, 27, 1932-1941.	2.2	174
5	Assessing the Ecological Risks of Per―and Polyfluoroalkyl Substances: Current Stateâ€ofâ€the Science and a Proposed Path Forward. Environmental Toxicology and Chemistry, 2021, 40, 564-605.	2.2	166
6	Fractionating Nanosilver: Importance for Determining Toxicity to Aquatic Test Organisms. Environmental Science & Technology, 2010, 44, 9571-9577.	4.6	163
7	Characterization of silver nanoparticles using flow-field flow fractionation interfaced to inductively coupled plasma mass spectrometry. Journal of Chromatography A, 2011, 1218, 4219-4225.	1.8	155
8	Multi-criteria decision analysis and environmental risk assessment for nanomaterials. Journal of Nanoparticle Research, 2007, 9, 543-554.	0.8	152
9	Potential for Occupational Exposure to Engineered Carbon-Based Nanomaterials in Environmental Laboratory Studies. Environmental Health Perspectives, 2010, 118, 49-54.	2.8	114
10	The Role of Behavioral Ecotoxicology in Environmental Protection. Environmental Science & Technology, 2021, 55, 5620-5628.	4.6	101
11	Surfactive stabilization of multi-walled carbon nanotube dispersions with dissolved humic substances. Environmental Pollution, 2009, 157, 1081-1087.	3.7	95
12	Release of Metal Impurities from Carbon Nanomaterials Influences Aquatic Toxicity. Environmental Science & Technology, 2009, 43, 4169-4174.	4.6	91
13	Assessing the fate and effects of nano aluminum oxide in the terrestrial earthworm, <i>Eisenia fetida</i> . Environmental Toxicology and Chemistry, 2010, 29, 1575-1580.	2.2	86
14	Toxicity of the explosives 2,4,6â€trinitrotoluene, hexahydroâ€1,3,5â€trinitroâ€1,3,5â€triazine, and octahydroâ€1,3,5,7â€tetranitroâ€1,3,5,7â€tetrazocine in sediments to <i>Chironomus tentans</i> and <i>Hyalella azteca</i> : Lowâ€dose hormesis and highâ€dose mortality. Environmental Toxicology and Chemistry, 2002, 1475-1482	2.2	80
15	Comparison of on-line detectors for field flow fractionation analysis of nanomaterials. Talanta, 2013, 104, 140-148.	2.9	79
16	Differential Effects and Potential Adverse Outcomes of Ionic Silver and Silver Nanoparticles in Vivo and in Vitro. Environmental Science & amp; Technology, 2014, 48, 4546-4555.	4.6	79
17	Impact of Organic Carbon on the Stability and Toxicity of Fresh and Stored Silver Nanoparticles. Environmental Science & Technology, 2012, 46, 10772-10780.	4.6	78
18	Emerging methods and tools for environmental risk assessment, decision-making, and policy for nanomaterials: summary of NATO Advanced Research Workshop. Journal of Nanoparticle Research, 2009, 11, 513-527.	0.8	74

#	Article	IF	CITATIONS
19	Influence of nanotube preparation in Aquatic Bioassays. Environmental Toxicology and Chemistry, 2009, 28, 1930-1938.	2.2	71
20	Nondestructive, Minimal-Disturbance, Direct-Burial Solid-Phase Microextraction Fiber Technique for Measuring TNT in Sediment. Environmental Science & Technology, 2003, 37, 1625-1632.	4.6	61
21	Comparing the effects of nanosilver size and coating variations on bioavailability, internalization, and elimination, using <i>Lumbriculus variegatus</i> . Environmental Toxicology and Chemistry, 2013, 32, 2069-2077.	2.2	54
22	Gene Expression Profiles in Fathead Minnow Exposed to 2,4-DNT: Correlation with Toxicity in Mammals. Toxicological Sciences, 2006, 94, 71-82.	1.4	53
23	A review of the tissue residue approach for organic and organometallic compounds in aquatic organisms. Integrated Environmental Assessment and Management, 2011, 7, 50-74.	1.6	52
24	Simultaneous dispersion–dissolution behavior of concentrated silver nanoparticle suspensions in the presence of model organic solutes. Chemosphere, 2011, 84, 1108-1116.	4.2	50
25	TOXICITY OF THE EXPLOSIVES 2,4,6-TRINITROTOLUENE, HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE, AND OCTAHYDRO-1,3,5,7-TETRANITRO-1,3,5,7-TETRAZOCINE IN SEDIMENTS TO CHIRONOMUS TENTANS AND HYALELLA AZTECA: LOW-DOSE HORMESIS AND HIGH-DOSE MORTALITY. Environmental Toxicology and Chemistry. 2002. 21. 1475.	2.2	46
26	Sediment toxicity and bioaccumulation of nano and micron-sized aluminum oxide. Environmental Toxicology and Chemistry, 2010, 29, 422-429.	2.2	43
27	In some places, in some cases, and at some times, harmful algal blooms are the greatest threat to inland water quality. Environmental Toxicology and Chemistry, 2017, 36, 1125-1127.	2.2	43
28	Toward Sustainable Environmental Quality: Priority Research Questions for North America. Environmental Toxicology and Chemistry, 2019, 38, 1606-1624.	2.2	43
29	RECOMMENDATIONS FOR THE ASSESSMENT OF TNT TOXICITY IN SEDIMENT. Environmental Toxicology and Chemistry, 2004, 23, 141.	2.2	41
30	Predictive modeling of nanomaterial exposure effects in biological systems. International Journal of Nanomedicine, 2013, 8 Suppl 1, 31.	3.3	40
31	Effects of ultraviolet-B light and polyaromatic hydrocarbon exposure on sea urchin development and bacterial bioluminescence. Marine Environmental Research, 1999, 48, 439-457.	1.1	39
32	Tiered guidance for risk-informed environmental health and safety testing of nanotechnologies. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	37
33	The role of metabolism in the toxicity of 2,4,6-trinitrotoluene and its degradation products to the aquatic amphipod Hyalella azteca. Ecotoxicology and Environmental Safety, 2008, 70, 38-46.	2.9	36
34	TIME-DEPENDENT LETHAL BODY RESIDUES FOR THE TOXICITY OF PENTACHLOROBENZENE TO HYALELLA AZTECA. Environmental Toxicology and Chemistry, 2004, 23, 1335.	2.2	33
35	Gill Histopathologies Following Exposure to Nanosilver or Silver Nitrate. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2015, 78, 301-315.	1.1	33
36	Sublethal effects of multiwalled carbon nanotube exposure in the invertebrate <i>Daphnia magna</i> . Environmental Toxicology and Chemistry, 2016, 35, 200-204.	2.2	33

#	Article	IF	CITATIONS
37	A Methodology for Deriving Tissue Residue Benchmarks for Aquatic Biota: A Case Study for Fish Exposed to 2,3,7,8-Tetrachlorodibenzo- p-Dioxin and Equivalents. Integrated Environmental Assessment and Management, 2005, 1, 142.	1.6	31
38	Acute toxicity of sodium chloride and potassium chloride to a unionid mussel (<i>Lampsilis) Tj ETQq0 0 0 rgBT /</i>	Overlock 1	0 Tf 50 702 T
20	A comparison of acute and chronic toxicity methods for marine sediments. Marine Environmental	11	90

	Research, 2009, 68, 118-127.		
40	The challenges of nanotechnology risk management. Nano Today, 2015, 10, 6-10.	6.2	28
41	TIME-DEPENDENT TOXICITY OF DICHLORODIPHENYLDICHLOROETHYLENE TO HYALELLA AZTECA. Environmental Toxicology and Chemistry, 2005, 24, 211.	2.2	27
42	Evaluation of chronic toxicity of sodium chloride or potassium chloride to a unionid mussel (<i>Lampsilis siliquoidea</i>) in water exposures using standard and refined toxicity testing methods. Environmental Toxicology and Chemistry, 2018, 37, 3050-3062.	2.2	27
43	TOXICITY AND BIOACCUMULATION OF 2,4,6-TRINITROTOLUENE IN FATHEAD MINNOW (PIMEPHALES) TJ ETQq1 1	0.78431 2.2	4_rgBT /Ov
44	Determination of nanosilver dissolution kinetics and toxicity in an environmentally relevant aqueous medium. Environmental Toxicology and Chemistry, 2014, 33, 1783-1791.	2.2	24
45	Solid phase microextraction fibers for estimating the toxicity of nitroaromatic compounds. Aquatic Ecosystem Health and Management, 2004, 7, 387-397.	0.3	23
46	Modeling water and sediment contamination of Lake Pontchartrain following pump-out of Hurricane Katrina floodwater. Journal of Environmental Management, 2008, 87, 429-442.	3.8	23
47	Biological Effects of Elevated Major Ions in Surface Water Contaminated by a Produced Water from Oil Production. Archives of Environmental Contamination and Toxicology, 2019, 76, 670-677.	2.1	23
48	Relative Sensitivity of Zebra Mussel (Dreissena polymorpha) Life-stages to Two Copper Sources. Journal of Great Lakes Research, 2006, 32, 596-606.	0.8	22
49	Toxicokinetic interactions and survival of Hyalella azteca exposed to binary mixtures of chlorpyrifos, dieldrin, and methyl mercury. Aquatic Toxicology, 2001, 51, 377-388.	1.9	21
50	Gaining a Critical Mass: A Dose Metric Conversion Case Study Using Silver Nanoparticles. Environmental Science & Technology, 2015, 49, 12490-12499.	4.6	21
51	Fate and Toxicity of CuO Nanospheres and Nanorods used in Al/CuO Nanothermites Before and After Combustion. Environmental Science & amp; Technology, 2013, 47, 11258-11267.	4.6	16
52	Evaluation of Acute and Chronic Toxicity of Nickel and Zinc to 2 Sensitive Freshwater Benthic Invertebrates Using Refined Testing Methods. Environmental Toxicology and Chemistry, 2020, 39, 2256-2268.	2.2	15
53	Assessing the exposure to nanosilver and silver nitrate on fathead minnow gill gene expression and mucus production. Environmental Nanotechnology, Monitoring and Management, 2015, 4, 58-66.	1.7	14
54	A weight-of-evidence approach to identify nanomaterials in consumer products: a case study of nanoparticles in commercial sunscreens. Journal of Exposure Science and Environmental Epidemiology, 2016, 26, 26-34.	1.8	13

#	Article	IF	CITATIONS
55	Acute and Chronic Toxicity of Sodium Nitrate and Sodium Sulfate to Several Freshwater Organisms in Waterâ€Only Exposures. Environmental Toxicology and Chemistry, 2020, 39, 1071-1085.	2.2	13
56	Environmental Consequences of Water Pumped from Greater New Orleans Following Hurricane Katrina:Â Chemical, Toxicological, and Infaunal Analysis. Environmental Science & Technology, 2007, 41, 2594-2601.	4.6	12
57	A framework for using dose as a metric to assess toxicity of fish to PAHs. Ecotoxicology and Environmental Safety, 2010, 73, 486-490.	2.9	11
58	Identification of silver nanoparticles in Pimephales promelas gastrointestinal tract and gill tissues using flow field flow fractionation ICP-MS. RSC Advances, 2014, 4, 41277-41280.	1.7	11
59	Stability of solid-phase selenium species in fly ash after prolonged submersion in a natural river system. Chemosphere, 2014, 95, 174-181.	4.2	11
60	Alteration in <i>Pimephales promelas</i> mucus production after exposure to nanosilver or silver nitrate. Environmental Toxicology and Chemistry, 2014, 33, 2869-2872.	2.2	10
61	Comparison of acute to chronic ratios between silver and gold nanoparticles, using <i>Ceriodaphnia dubia</i> . Nanotoxicology, 2017, 11, 1127-1139.	1.6	10
62	Influence of remediation on sediment toxicity within the Grand Calumet River, Indiana, USA. Chemosphere, 2020, 249, 126056.	4.2	10
63	Modeling the Bioavailability of Nickel and Zinc to <i>Ceriodaphnia dubia</i> and <i>Neocloeon triangulifer</i> in Toxicity Tests with Natural Waters. Environmental Toxicology and Chemistry, 2021, 40, 3049-3062.	2.2	10
64	Impact assessment of dredging to remove coal fly ash at the Tennessee Valley Authority Kingston Fossil plant using fathead minnow elutriate exposures. Environmental Toxicology and Chemistry, 2013, 32, 822-830.	2.2	9
65	EHS Testing of Products Containing Nanomaterials: What is Nano Release?. Environmental Science & Technology, 2015, 49, 11245-11246.	4.6	9
66	Interactions of chlorpyrifos and methyl mercury: a mechanistic approach to assess chemical mixtures. Marine Environmental Research, 2000, 50, 113-117.	1.1	8
67	NEIMiner: nanomaterial environmental impact data miner. International Journal of Nanomedicine, 2013, 8 Suppl 1, 15.	3.3	8
68	Toxicity of the explosives 2,4,6-trinitrotoluene, hexahydro-1,3,5-trinitro-1,3,5-triazine, and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine in sediments to Chironomus tentans and Hyalella azteca: low-dose hormesis and high-dose mortality. Environmental Toxicology and Chemistry, 2002, 21, 1475-82.	2.2	8
69	Hyalella azteca 10-day sediment toxicity test: Comparison of growth measurement endpoints. , 1998, 13, 243-248.		7
70	Assessment of lead uptake in reptilian prey species. Chemosphere, 2007, 68, 1591-1596.	4.2	7
71	Nanomaterial environmental risk assessment. Integrated Environmental Assessment and Management, 2015, 11, 333-335.	1.6	7
72	Evaluation of reduced sediment volume procedures for acute toxicity tests using the estuarine amphipod Leptocheirus plumulosus. Environmental Toxicology and Chemistry, 2010, 29, 2769-2776.	2.2	5

#	Article	IF	CITATIONS
73	The Sensitivity of a Unionid Mussel (<i>Lampsilis Siliquoidea</i>) to a Permitted Effluent and Elevated Potassium in the Effluent. Environmental Toxicology and Chemistry, 2021, 40, 3410-3420.	2.2	5
74	Assessing Stressors in Coastal Ecosystems: An Approach to the Patient. Human and Ecological Risk Assessment (HERA), 2001, 7, 1447-1455.	1.7	4
75	Nanomaterials Ecotoxicology. , 2014, , 117-151.		4
76	Influence of Dissolved Organic Carbon on the Acute Toxicity of Copper and Zinc to White Sturgeon (Acipenser transmontanus) and a Cladoceran (Ceriodaphnia dubia). Environmental Toxicology and Chemistry, 2019, 38, 2682-2687.	2.2	4
77	Direct and Delayed Mortality of Ceriodaphnia dubia and Rainbow Trout Following Timeâ€Varying Acute Exposures to Zinc. Environmental Toxicology and Chemistry, 2021, 40, 2484-2498.	2.2	4
78	Toxicological evaluation of constructed wetland habitat sediments utilizing 10-day sediment toxicity test and bacterial bioluminescence. Chemosphere, 1998, 36, 3167-3180.	4.2	3
79	A preliminary exposure assessment of microcystins from consumption of drinking water in the United States. Lake and Reservoir Management, 2007, 23, 203-210.	0.4	3
80	Novel control and steadyâ€state correction method for standard 28â€day bioaccumulation tests using <i>Nereis virens</i> . Environmental Toxicology and Chemistry, 2011, 30, 1366-1375.	2.2	3
81	Predictive modeling of nanomaterial biological effects. , 2012, , .		3
82	Effects of soot byâ€product from the synthesis of engineered metallofullerene nanomaterials on terrestrial invertebrates. Environmental Toxicology and Chemistry, 2018, 37, 1594-1605.	2.2	3
83	Sensitivity of Warm-Water Fishes and Rainbow Trout to Selected Contaminants. Bulletin of Environmental Contamination and Toxicology, 2020, 104, 321-326.	1.3	3
84	Method Development for a Shortâ€Term 7â€Day Toxicity Test with Unionid Mussels. Environmental Toxicology and Chemistry, 2021, 40, 3392-3409.	2.2	2
85	Toxicogenomic assessment of the population level impacts of contaminants. Integrated Environmental Assessment and Management, 2007, 3, 562-564.	1.6	1
86	NEIMiner: A model driven data mining system for studying environmental impact of nanomaterials. , 2012, , .		1
87	Interlaboratory Comparison of Three Sediment Bioaccumulation Tests. Environmental Toxicology and Chemistry, 2022, 41, 1260-1275.	2.2	1