Mark C Vanderwel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9070294/publications.pdf Version: 2024-02-01

MARK C VANDERWEL

#	Article	IF	CITATIONS
1	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	9.5	1,038
2	Plant functional traits have globally consistent effects on competition. Nature, 2016, 529, 204-207.	27.8	655
3	Global variability in leaf respiration in relation to climate, plant functional types and leaf traits. New Phytologist, 2015, 206, 614-636.	7.3	350
4	Allometric equations for integrating remote sensing imagery into forest monitoring programmes. Global Change Biology, 2017, 23, 177-190.	9.5	254
5	Forest resilience and tipping points at different spatioâ€ŧemporal scales: approaches and challenges. Journal of Ecology, 2015, 103, 5-15.	4.0	224
6	A Metaâ€Analysis of Bird Responses to Uniform Partial Harvesting across North America. Conservation Biology, 2007, 21, 1230-1240.	4.7	95
7	Insect community composition and trophic guild structure in decaying logs from eastern Canadian pine-dominated forests. Forest Ecology and Management, 2006, 225, 190-199.	3.2	90
8	Wood production response to climate change will depend critically on forest composition and structure. Global Change Biology, 2014, 20, 3632-3645.	9.5	87
9	An integrated model for snag and downed woody debris decay class transitions. Forest Ecology and Management, 2006, 234, 48-59.	3.2	79
10	Methods to estimate aboveground wood productivity from long-term forest inventory plots. Forest Ecology and Management, 2014, 320, 30-38.	3.2	75
11	Global convergence in leaf respiration from estimates of thermal acclimation across time and space. New Phytologist, 2015, 207, 1026-1037.	7.3	74
12	Quantifying variation in forest disturbance, and its effects on aboveground biomass dynamics, across the eastern <scp>U</scp> nited <scp>S</scp> tates. Global Change Biology, 2013, 19, 1504-1517.	9.5	67
13	Competition influences tree growth, but not mortality, across environmental gradients in Amazonia and tropical Africa. Ecology, 2020, 101, e03052.	3.2	57
14	How Stand Productivity Results from Size- and Competition-Dependent Growth and Mortality. PLoS ONE, 2011, 6, e28660.	2.5	51
15	Snag dynamics in partially harvested and unmanaged northern hardwood forests. Canadian Journal of Forest Research, 2006, 36, 2769-2779.	1.7	50
16	Climateâ€related variation in mortality and recruitment determine regional forestâ€type distributions. Global Ecology and Biogeography, 2013, 22, 1192-1203.	5.8	46
17	How do disturbances and environmental heterogeneity affect the pace of forest distribution shifts under climate change?. Ecography, 2014, 37, 10-20.	4.5	45
18	Contrasting downed woody debris dynamics in managed and unmanaged northern hardwood stands. Canadian Journal of Forest Research, 2008, 38, 2850-2861.	1.7	38

MARK C VANDERWEL

#	Article	IF	CITATIONS
19	Landscapeâ€scale consequences of differential tree mortality from catastrophic wind disturbance in the Amazon. Ecological Applications, 2016, 26, 2225-2237.	3.8	38
20	Cavity tree occurrence in hardwood forests of central Ontario. Forest Ecology and Management, 2007, 239, 191-199.	3.2	36
21	Changing How Earth System Modeling is Done to Provide More Useful Information for Decision Making, Science, and Society. Bulletin of the American Meteorological Society, 2014, 95, 1453-1464.	3.3	34
22	An Alternative Approach to Using LiDAR Remote Sensing Data to Predict Stem Diameter Distributions across a Temperate Forest Landscape. Remote Sensing, 2017, 9, 944.	4.0	22
23	PpORS, an ancient type III polyketide synthase, is required for integrity of leaf cuticle and resistance to dehydration in the moss, Physcomitrella patens. Planta, 2018, 247, 527-541.	3.2	20
24	Plant communities on nitrogenâ€rich soil are less sensitive to soil moisture than plant communities on nitrogenâ€poor soil. Journal of Ecology, 2020, 108, 133-144.	4.0	20
25	Fine cale Habitat Associations of Redâ€Backed Voles in Boreal Mixedwood Stands. Journal of Wildlife Management, 2010, 74, 1492-1501.	1.8	18
26	A simple area-based model for predicting airborne LiDAR first returns from stem diameter distributions: an example study in an uneven-aged, mixed temperate forest. Canadian Journal of Forest Research, 2015, 45, 1338-1350.	1.7	14
27	Demographic controls of aboveground forest biomass across North America. Ecology Letters, 2016, 19, 414-423.	6.4	13
28	Fine-Scale Habitat Associations of Red-Backed Voles in Boreal Mixedwood Stands. Journal of Wildlife Management, 2010, 74, 1492-1501.	1.8	12
29	Using aerial canopy data from UAVs to measure the effects of neighbourhood competition on individual tree growth. Forest Ecology and Management, 2020, 461, 117949.	3.2	12
30	Predicting Tree Mortality Using Spectral Indices Derived from Multispectral UAV Imagery. Remote Sensing, 2022, 14, 2195.	4.0	10
31	Contributions of harvest slash to maintaining downed woody debris in selection-managed forests. Canadian Journal of Forest Research, 2010, 40, 1680-1685.	1.7	8
32	Variation in tree growth sensitivity to moisture across a water-limited forest landscape. Dendrochronologia, 2019, 54, 87-96.	2.2	8
33	Long-term snag and downed woody debris dynamics under periodic surface fire, fire suppression, and shelterwood management. Canadian Journal of Forest Research, 2009, 39, 1709-1721.	1.7	7
34	Structural changes and potential vertebrate responses following simulated partial harvesting of boreal mixedwood stands. Forest Ecology and Management, 2011, 261, 1362-1371.	3.2	7
35	Survey of mercury in boreal chorus frog (<i>Pseudacris maculata</i>) and wood frog (<i>Rana) Tj ETQq1 1 0.784 315-329.</i>	4314 rgBT 2.4	Overlock 10 7
36	Using a Data-Constrained Model of Home Range Establishment to Predict Abundance in Spatially Heterogeneous Habitats. PLoS ONE, 2012, 7, e40599.	2.5	5

MARK C VANDERWEL

#	Article	IF	CITATIONS
37	Predicting the abundance of forest types across the eastern United States through inverse modelling of tree demography. Ecological Applications, 2017, 27, 2128-2141.	3.8	4
38	A critique of general allometry-inspired models for estimating forest carbon density from airborne LiDAR. PLoS ONE, 2019, 14, e0215238.	2.5	4
39	Boreal conifer seedling responses to experimental competition removal during summer drought. Ecosphere, 2021, 12, e03391.	2.2	3
40	Topographic Variation in Forest Expansion Processes across a Mosaic Landscape in Western Canada. Land, 2021, 10, 1355.	2.9	2
41	Using imagery from unmanned aerial vehicles to investigate variation in snag frequency among forest stands. Forest Ecology and Management, 2022, 511, 120138.	3.2	2
42	Predicting broad-scale carbon loss and recovery in managed tropical forests. Carbon Management, 2013, 4, 575-577.	2.4	1
43	Local trends in abundance of migratory bats across 20 years. Journal of Mammalogy, 2020, 101, 1542-1547.	1.3	1