Horst Rogalla

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9070285/publications.pdf

Version: 2024-02-01

331259 197535 2,427 65 21 49 h-index citations g-index papers 67 67 67 2338 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Quantum-Derived Voltage Waveform Synthesis With Pulse-Driven High-Transition-Temperature Josephson Junctions. IEEE Transactions on Applied Superconductivity, 2020, 30, 1-5.	1.1	1
2	An improved electronic determination of the Boltzmann constant by Johnson noise thermometry. Metrologia, 2017, 54, 549-558.	0.6	65
3	The NIST Johnson Noise Thermometry System for the Determination of the Boltzmann Constant. Journal of Research of the National Institute of Standards and Technology, 2017, 122, 1-43.	0.4	13
4	Effective Constitutive Parameters of High-Temperature Superconducting Split-Ring Resonator Arrays. IEEE Transactions on Applied Superconductivity, 2015, 25, 1-7.	1.1	9
5	Spin-Transfer Torque Switching in Nanopillar Superconducting-Magnetic Hybrid Josephson Junctions. Physical Review Applied, 2015, 3, .	1.5	33
6	Improved electronic measurement of the Boltzmann constant by Johnson noise thermometry. Metrologia, 2015, 52, S242-S256.	0.6	55
7	Improvements in the Boltzmann constant measurement with noise thermometry at NIM., 2014,,.		O
8	Systematic error resolved in NIST Johnson Noise Thermometer. , 2014, , .		4
9	Resonant Response of High-Temperature Superconducting Split-Ring Resonators. IEEE Transactions on Applied Superconductivity, 2013, 23, 1300405-1300405.	1.1	6
10	Flat Frequency Response in the Electronic Measurement of Boltzmann's Constant. IEEE Transactions on Instrumentation and Measurement, 2013, 62, 1518-1523.	2.4	20
11	Johnson Noise Thermometry Measurement of the Boltzmann Constant With a 200 <formula formulatype="inline"><tex notation="TeX">\$Omega\$</tex></formula> Sense Resistor. IEEE Transactions on Instrumentation and Measurement, 2013, 62, 1512-1517.	2.4	5
12	Flat frequency response in the electronic measurement of the Boltzmann constant. , 2012, , .		3
13	Development of a Four-Channel Johnson Noise Thermometry System. IEEE Transactions on Instrumentation and Measurement, 2011, 60, 2655-2659.	2.4	3
14	Reduced Nonlinearity Effect on the Electronic Measurement of the Boltzmann Constant. IEEE Transactions on Instrumentation and Measurement, 2011, 60, 2427-2433.	2.4	9
15	An electronic measurement of the Boltzmann constant. Metrologia, 2011, 48, 142-153.	0.6	76
16	Vortex Trapping and Expulsion in Thin-Film Type-II Superconducting Strips. IEEE Transactions on Applied Superconductivity, 2009, 19, 3537-3540.	1.1	0
17	Improvements in the NIST Johnson Noise Thermometry System. IEEE Transactions on Instrumentation and Measurement, 2009, 58, 884-890.	2.4	30
18	Electronic measurement of the Boltzmann constant with a quantum-voltage-calibrated Johnson noise thermometer. Comptes Rendus Physique, 2009, 10, 849-858.	0.3	23

#	Article	IF	Citations
19	ISEC 2005: The 10th International Superconductive Electronics Conference. Superconductor Science and Technology, 2006, 19, .	1.8	O
20	Bistable superconducting quantum interference device with built-in switchable π∕2 phase shift. Applied Physics Letters, 2004, 85, 4091-4093.	1.5	12
21	Influence of substrate–film interface engineering on the superconducting properties of YBa2Cu3O7â~δ. Applied Physics Letters, 2004, 84, 1150-1152.	1.5	29
22	Ordering and manipulation of the magnetic moments in large-scale superconducting π-loop arrays. Nature, 2003, 422, 50-53.	13.7	223
23	Monocrystalline YBa2Cu3O7â^'x thin films on vicinal SrTiO3 (001) substrates. Applied Physics Letters, 2003, 83, 5199-5201.	1.5	30
24	The road to magnesium diboride thin films, Josephson junctions and SQUIDs. Superconductor Science and Technology, 2003, 16, 246-253.	1.8	16
25	Magnesium-diboride ramp-type Josephson junctions. Applied Physics Letters, 2002, 80, 2141-2143.	1.5	52
26	Enhanced transparency ramp-type Josephson contacts through interlayer deposition. Applied Physics Letters, 2002, 80, 4579-4581.	1.5	41
27	Growth studies of Balâ^'x(Kx)BiO3â^'Î' thin films by pulsed-laser deposition. Physica C: Superconductivity and Its Applications, 2002, 372-376, 596-599.	0.6	10
28	Superconducting thin films of MgB2 by pulsed-laser deposition. Physica C: Superconductivity and Its Applications, 2002, 372-376, 1258-1261.	0.6	8
29	Exploring the deposition of oxides on silicon for photovoltaic cells by pulsed laser deposition. Applied Surface Science, 2002, 186, 453-457.	3.1	5
30	Superconducting Mg–B films by pulsed-laser deposition in an in situ two-step process using multicomponent targets. Applied Physics Letters, 2001, 79, 394-396.	1.5	108
31	Structure and properties of (Sr,Ca)CuO2–BaCuO2 superlattices grown by pulsed laser interval deposition. Physica C: Superconductivity and Its Applications, 2001, 353, 167-183.	0.6	13
32	Superconducting quantum interference device based on MgB2 nanobridges. Applied Physics Letters, 2001, 79, 2420-2422.	1.5	90
33	Epitaxial growth of oxides with pulsed laser interval deposition. Journal of Crystal Growth, 2000, 211, 98-105.	0.7	50
34	Surface morphology determined by (001) single-crystal SrTiO3 termination. Physica C: Superconductivity and Its Applications, 2000, 339, 215-230.	0.6	90
35	Imposed layer-by-layer growth with pulsed laser interval deposition. Applied Surface Science, 2000, 168, 223-226.	3.1	22
36	A New Approach in Layer-by-layer Growth of Oxide Materials by Pulsed Laser Deposition., 2000, 4, 311-318.		14

#	Article	IF	Citations
37	Binary Mixtures of Self-Assembled Monolayers on SrTiO3:Â Experimental Evidence for Phase Segregation. Langmuir, 2000, 16, 1469-1472.	1.6	5
38	Wet Etching Methods for Perovskite Substrates. Materials Research Society Symposia Proceedings, 1999, 587, O3.6.1.	0.1	9
39	Imposed layer-by-layer growth by pulsed laser interval deposition. Applied Physics Letters, 1999, 74, 3729-3731.	1.5	129
40	In-situ monitoring by reflective high energy electron diffraction during pulsed laser deposition. Applied Surface Science, 1999, 138-139, 17-23.	3.1	19
41	Pulsed laser ablation of La0.5Sr0.5CoO3. Applied Surface Science, 1999, 150, 171-177.	3.1	10
42	In Situ Growth Studies of Artificial Layered (BA,SR,CA)CUO2 on Quasi-Ideal SrTiO3 Substrates by High Pressure Rheed. Materials Research Society Symposia Proceedings, 1999, 569, 35.	0.1	1
43	Atomic force microscopic studies on the growth of self-assembled monolayers on SrTiO3-surfaces. Thin Solid Films, 1998, 327-329, 185-190.	0.8	12
44	Spectroscopic characterisation of self-assembled monolayers of alkylsiloxanes on SrTiO3. Materials Science and Engineering C, 1998, 5, 163-166.	3.8	2
45	Oxygen diffusion in laser-ablated YBa2Cu3Ox thin films studied by spectroscopic ellipsometry. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1998, 56, 123-129.	1.7	4
46	In-situ growth monitoring during PLD of oxides using RHEED at high oxygen pressure. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1998, 56, 223-227.	1.7	16
47	Influence of the surface treatment on the homoepitaxial growth of SrTiO3. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1998, 56, 209-212.	1.7	34
48	In-situ monitoring during pulsed laser deposition using RHEED at high pressure. Applied Surface Science, 1998, 127-129, 633-638.	3.1	15
49	Quasi-ideal strontium titanate crystal surfaces through formation of strontium hydroxide. Applied Physics Letters, 1998, 73, 2920-2922.	1.5	661
50	Temperature dependence of the 4-eV optical transition in YBa2Cu3O6. Physical Review B, 1998, 57, 13418-13421.	1.1	9
51	<i>ln Situ</i> Initial Growth Studies of SrTiO ₃ on SrTiO ₃ by Time Resolved High Pressure RHEED. Materials Research Society Symposia Proceedings, 1998, 526, 33.	0.1	12
52	The effect of ion milling on the morphology of ramp-type Josephson junctions. Journal of Materials Research, 1997, 12, 2952-2957.	1.2	16
53	In-Situ Diagnostics at High Pressures: Ellipsometric and Rheed Studies of the Growth of Yba ₂ Cu ₃ O ₇ . Materials Research Society Symposia Proceedings, 1997, 502, 237.	0.1	4
54	In Situ Initial Growth Studies of (Sr, Ca)CuO2 ON SrTiO3 by High Pressure Rheed. Materials Research Society Symposia Proceedings, 1997, 502, 255.	0.1	3

#	Article	IF	CITATIONS
55	In-Situ Monitoring during PLD of Complex Oxides using Rheed at High Oxygen Pressure. Materials Research Society Symposia Proceedings, 1997, 502, 209.	0.1	O
56	Self-assembled monolayers of alkylsiloxanes on SrTiO3 substrates. Supramolecular Science, 1997, 4, 59-65.	0.7	5
57	In situmonitoring during pulsed laser deposition of complex oxides using reflection high energy electron diffraction under high oxygen pressure. Applied Physics Letters, 1997, 70, 1888-1890.	1.5	242
58	Weak link properties of YBa 2 Cu 3 O 7 nanostructures. , 1996, 2697, 458.		0
59	Improved properties of Pulsed Laser Deposited YBaCuO on NdGaO 3 using CeO 2 template layers. Applied Surface Science, 1996, 96-98, 685-688.	3.1	2
60	Noise in (double) relaxation oscillation SQUIDs. Physica B: Condensed Matter, 1994, 194-196, 141-142.	1.3	4
61	Selective epitaxial growth of sub-micron structures of YBaCuO by substrate modification. Physica C: Superconductivity and Its Applications, 1994, 235-240, 645-646.	0.6	1
62	Superconducting electronics. Cryogenics, 1994, 34, 25-30.	0.9	33
63	Scanning Auger microscopy as applied to the analysis of highly textured YBaCu3Ox thin films. Journal of the Less Common Metals, 1989, 151, 23-29.	0.9	3
64	Influence of rf Plasma in Plasma Cleaning Process on Properties of Thin Superconducting Nb3Ge Films. Japanese Journal of Applied Physics, 1985, 24, 40-44.	0.8	7
65	Damage to Nb3Ge Films during CF4Cleaning. Japanese Journal of Applied Physics, 1984, 23, 1536-1536.	0.8	O