Likai Hou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9070187/publications.pdf Version: 2024-02-01

Γικλι Ηου

#	Article	IF	CITATIONS
1	Flexible Microswimmer Manipulation in Multiple Microfluidic Systems Utilizing Thermal Buoyancy-Capillary Convection. Analytical Chemistry, 2021, 93, 2560-2569.	6.5	6
2	Continuous microfluidic fabrication of anisotropic microparticles for enhanced wastewater purification. Lab on A Chip, 2021, 21, 1517-1526.	6.0	13
3	Characterization of Particle Movement and High-Resolution Separation of Microalgal Cells via Induced-Charge Electroosmotic Advective Spiral Flow. Analytical Chemistry, 2021, 93, 1667-1676.	6.5	12
4	High-throughput and Multimodal Separation of Microbeads Using Cyclical Induced-charge Electro-osmotic Vortices and Its Application in Size Fractionation of Crumpled Graphene Oxide Balls. Applied Materials Today, 2020, 19, 100545.	4.3	10
5	Flexible Particle Focusing and Switching in Continuous Flow via Controllable Thermal Buoyancy Convection. Analytical Chemistry, 2020, 92, 2778-2786.	6.5	9
6	Continuous microfluidic mixing and the highly controlled nanoparticle synthesis using direct current-induced thermal buoyancy convection. Microfluidics and Nanofluidics, 2020, 24, 1.	2.2	58
7	Fabrication of syntactic foam fillers <i>via</i> manipulation of on-chip quasi concentric nanoparticle-shelled droplet templates. Lab on A Chip, 2020, 20, 4600-4610.	6.0	9
8	Eccentric magnetic microcapsule for on-demand transportation, release, and evacuation in microfabrication fluidic networks. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 599, 124905.	4.7	5
9	Microparticle separation using asymmetrical induced-charge electro-osmotic vortices on an arc-edge-based floating electrode. Analyst, The, 2019, 144, 5150-5163.	3.5	6
10	Tri-fluid mixing in a microchannel for nanoparticle synthesis. Lab on A Chip, 2019, 19, 2936-2946.	6.0	24
11	Compoundâ€Dropletâ€Pairsâ€Filled Hydrogel Microfiber for Electricâ€Fieldâ€Induced Selective Release. Small, 2019, 15, e1903098.	10.0	30
12	Induced charge electro-osmotic particle separation. Nanoscale, 2019, 11, 6410-6421.	5.6	22
13	Continuous Particle Trapping, Switching, and Sorting Utilizing a Combination of Dielectrophoresis and Alternating Current Electrothermal Flow. Analytical Chemistry, 2019, 91, 5729-5738.	6.5	37
14	A micro-needle induced strategy for preparation of monodisperse liquid metal droplets in glass capillary microfluidics. Microfluidics and Nanofluidics, 2019, 23, 1.	2.2	9
15	Effect of vortex on mass transport and mixing in microcapillary channels. Chemical Engineering Journal, 2019, 362, 442-452.	12.7	24
16	Electrically controlled rapid release of actives encapsulated in double-emulsion droplets. Lab on A Chip, 2018, 18, 1121-1129.	6.0	47
17	Microbes vs. chemistry in the origin of the anaerobic gut lumen. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4170-4175.	7.1	176
18	Flexible particle flowâ€focusing in microchannel driven by dropletâ€directed inducedâ€charge electroosmosis. Electrophoresis, 2018, 39, 597-607.	2.4	17

Lικαι Hou

#	Article	IF	CITATIONS
19	Electric Field-Induced Cutting of Hydrogel Microfibers with Precise Length Control for Micromotors and Building Blocks. ACS Applied Materials & amp; Interfaces, 2018, 10, 40228-40237.	8.0	26
20	An efficient micromixer actuated by induced-charge electroosmosis using asymmetrical floating electrodes. Microfluidics and Nanofluidics, 2018, 22, 1.	2.2	34
21	High-Throughput Separation, Trapping, and Manipulation of Single Cells and Particles by Combined Dielectrophoresis at a Bipolar Electrode Array. Analytical Chemistry, 2018, 90, 11461-11469.	6.5	76
22	Flexible Continuous Particle Beam Switching via External-Field-Reconfigurable Asymmetric Induced-Charge Electroosmosis. Analytical Chemistry, 2018, 90, 11376-11384.	6.5	19
23	A simple microfluidic method for one-step encapsulation of reagents with varying concentrations in double emulsion drops for nanoliter-scale reactions and analyses. Analytical Methods, 2017, 9, 2511-2516.	2.7	18
24	Continuously Electrotriggered Core Coalescence of Double-Emulsion Drops for Microreactions. ACS Applied Materials & Interfaces, 2017, 9, 12282-12289.	8.0	54
25	Osmolarity-controlled swelling behaviors of dual-cored double-emulsion drops. Microfluidics and Nanofluidics, 2017, 21, 1.	2.2	15
26	A novel micromixer based on the alternating current-flow field effect transistor. Lab on A Chip, 2017, 17, 186-197.	6.0	53
27	Sequential Coalescence Enabled Twoâ€Step Microreactions in Triple ore Doubleâ€Emulsion Droplets Triggered by an Electric Field. Small, 2017, 13, 1702188.	10.0	44
28	Microreactions: Sequential Coalescence Enabled Two‣tep Microreactions in Tripleâ€Core Doubleâ€Emulsion Droplets Triggered by an Electric Field (Small 46/2017). Small, 2017, 13, .	10.0	1
29	In-plane microvortices micromixer-based AC electrothermal for testing drug induced death of tumor cells. Biomicrofluidics, 2016, 10, 064102.	2.4	35
30	Microbial Nanoculture as an Artificial Microniche. Scientific Reports, 2016, 6, 30578.	3.3	30
31	A dual-core double emulsion platform for osmolarity-controlled microreactor triggered by coalescence of encapsulated droplets. Biomicrofluidics, 2016, 10, 034111.	2.4	28
32	Bubble-filled silica microfibers from multiphasic flows for lightweight composite fabrication. Chemical Engineering Journal, 2016, 288, 539-545.	12.7	21
33	Electrocoalescence of paired droplets encapsulated in double-emulsion drops. Lab on A Chip, 2016, 16, 4313-4318.	6.0	37
34	Large-Scale Single Particle and Cell Trapping based on Rotating Electric Field Induced-Charge Electroosmosis. Analytical Chemistry, 2016, 88, 11791-11798.	6.5	44
35	Scaled particle focusing in a microfluidic device with asymmetric electrodes utilizing induced-charge electroosmosis. Lab on A Chip, 2016, 16, 2803-2812.	6.0	46
36	Effects of chip geometries on dielectrophoresis and electrorotation investigation. Chinese Journal of Mechanical Engineering (English Edition), 2014, 27, 103-110.	3.7	5