Gil Atzmon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/907005/publications.pdf

Version: 2024-02-01

117453 79541 12,297 78 34 73 citations h-index g-index papers 80 80 80 26918 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Rare coding variants in 35 genes associate with circulating lipid levels—A multi-ancestry analysis of 170,000 exomes. American Journal of Human Genetics, 2022, 109, 81-96.	2.6	24
2	Greater effect of polygenic risk score for Alzheimer's disease among younger cases who are apolipoprotein E-ε4 carriers. Neurobiology of Aging, 2021, 99, 101.e1-101.e9.	1.5	16
3	The Hypothalamic-Pituitary-Testicular Axis in Exceptionally Old Men. Journal of the Endocrine Society, 2021, 5, A727-A727.	0.1	O
4	Novel ultra-rare exonic variants identified in a founder population implicate cadherins in schizophrenia. Neuron, 2021, 109, 1465-1478.e4.	3.8	21
5	Determinants of penetrance and variable expressivity in monogenic metabolic conditions across 77,184 exomes. Nature Communications, 2021, 12, 3505.	5 . 8	49
6	Genetic signature of human longevity in PKC and NFâ€ÎºB signaling. Aging Cell, 2021, 20, e13362.	3.0	12
7	Rare genetic coding variants associated with human longevity and protection against age-related diseases. Nature Aging, 2021, 1, 783-794.	5 . 3	22
8	Redox-mediated regulation of aging and healthspan by an evolutionarily conserved transcription factor HLH-2/Tcf3/E2A. Redox Biology, 2020, 32, 101448.	3.9	10
9	Prevalent skin cancer and conservative faith may be linked with cognitive impairment in Ashkenazi Jewish exceptionally longâ€lived individuals. Alzheimer's and Dementia, 2020, 16, e046002.	0.4	O
10	The mutational constraint spectrum quantified from variation in 141,456 humans. Nature, 2020, 581, 434-443.	13.7	6,140
11	Transcript expression-aware annotation improves rare variant interpretation. Nature, 2020, 581, 452-458.	13.7	142
12	Pregnancy as a model for aging. Ageing Research Reviews, 2020, 62, 101093.	5.0	20
13	Breaking the Glass Ceiling. Gerontology, 2020, 66, 309-314.	1.4	1
14	Exceptionally Long-Lived Individuals (ELLI) Demonstrate Slower Aging Rate Calculated by DNA Methylation Clocks as Possible Modulators for Healthy Longevity. International Journal of Molecular Sciences, 2020, 21, 615.	1.8	18
15	The effects of environmental stressors on candidate aging associated genes. Experimental Gerontology, 2020, 137, 110952.	1.2	5
16	The mitochondrial derived peptide humanin is a regulator of lifespan and healthspan. Aging, 2020, 12, 11185-11199.	1.4	67
17	Senescence and Longevity of Sea Urchins. Genes, 2020, 11, 573.	1.0	7
18	A meta-analysis of genome-wide association studies identifies multiple longevity genes. Nature Communications, 2019, 10, 3669.	5.8	214

#	Article	IF	CITATIONS
19	Telomeres and Longevity: A Cause or an Effect?. International Journal of Molecular Sciences, 2019, 20, 3233.	1.8	28
20	Exome sequencing of 20,791Âcases of type 2 diabetes and 24,440Âcontrols. Nature, 2019, 570, 71-76.	13.7	248
21	Empirical design of a variant quality control pipeline for whole genome sequencing data using replicate discordance. Scientific Reports, 2019, 9, 16156.	1.6	14
22	Screening Human Embryos for Polygenic Traits Has Limited Utility. Cell, 2019, 179, 1424-1435.e8.	13.5	78
23	PopCluster: an algorithm to identify genetic variants with ethnicity-dependent effects. Bioinformatics, 2019, 35, 3046-3054.	1.8	3
24	Evaluating the contribution of rare variants to type 2 diabetes and related traits using pedigrees. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 379-384.	3.3	28
25	Functional variants in the <i>LRRK2</i> gene confer shared effects on risk for Crohn's disease and Parkinson's disease. Science Translational Medicine, 2018, 10, .	5.8	273
26	High-depth whole genome sequencing of an Ashkenazi Jewish reference panel: enhancing sensitivity, accuracy, and imputation. Human Genetics, 2018, 137, 343-355.	1.8	24
27	Effects of FOXO3 Polymorphisms on Survival to Extreme Longevity in Four Centenarian Studies. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2018, 73, 1439-1447.	1.7	32
28	<i>>FOXP3</i> mutations causing earlyâ€onset insulinâ€requiring diabetes but without other features of immune dysregulation, polyendocrinopathy, enteropathy, Xâ€linked syndrome. Pediatric Diabetes, 2018, 19, 388-392.	1.2	25
29	Body mass index is negatively associated with telomere length: a collaborative cross-sectional meta-analysis of 87 observational studies. American Journal of Clinical Nutrition, 2018, 108, 453-475.	2.2	137
30	Genomic Instabilities, Cellular Senescence, and Aging: In Vitro, In Vivo and Aging-Like Human Syndromes. Frontiers in Medicine, 2018, 5, 104.	1.2	60
31	Genetic Insights Into Frailty: Association of 9p21-23 Locus With Frailty. Frontiers in Medicine, 2018, 5, 105.	1.2	19
32	Insights into the genetic epidemiology of Crohn's and rare diseases in the Ashkenazi Jewish population. PLoS Genetics, 2018, 14, e1007329.	1.5	66
33	Activation-Induced Autophagy Is Preserved in CD4+ T-Cells in Familial Longevity. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2017, 72, 1201-1206.	1.7	35
34	The GH receptor exon 3 deletion is a marker of male-specific exceptional longevity associated with increased GH sensitivity and taller stature. Science Advances, 2017, 3, e1602025.	4.7	47
35	A Low-Frequency Inactivating <i>AKT2</i> Variant Enriched in the Finnish Population Is Associated With Fasting Insulin Levels and Type 2 Diabetes Risk. Diabetes, 2017, 66, 2019-2032.	0.3	47
36	Effect of Exceptional Parental Longevity and Lifestyle Factors on Prevalence of Cardiovascular Disease in Offspring. American Journal of Cardiology, 2017, 120, 2170-2175.	0.7	27

#	Article	IF	CITATIONS
37	Association of anti-inflammatory cytokine IL10 polymorphisms with motoric cognitive risk syndrome in an Ashkenazi Jewish population. Neurobiology of Aging, 2017, 58, 238.e1-238.e8.	1.5	22
38	Sequence data and association statistics from 12,940 type 2 diabetes cases and controls. Scientific Data, 2017, 4, 170179.	2.4	31
39	[P3–118]: INCREASED BURDEN OF RARE LOSSâ€OFâ€FUNCTION VARIANTS IN ALZHEIMER's DISEASE PATIENTS COMPARED TO CENTENARIANS. Alzheimer's and Dementia, 2017, 13, P980.	0.4	O
40	The Genetics of Bene Israel from India Reveals Both Substantial Jewish and Indian Ancestry. PLoS ONE, 2016, 11, e0152056.	1.1	17
41	The genetic architecture of type 2 diabetes. Nature, 2016, 536, 41-47.	13.7	952
42	A Frameshift in CSF2RB Predominant Among Ashkenazi Jews Increases Risk for Crohn's Disease and Reduces Monocyte Signaling via GM-CSF. Gastroenterology, 2016, 151, 710-723.e2.	0.6	51
43	Genetic landscape of APOE in human longevity revealed by high-throughput sequencing. Mechanisms of Ageing and Development, 2016, 155, 7-9.	2.2	35
44	New Locus for Skin Intrinsic Fluorescence in Type 1 Diabetes Also Associated With Blood and Skin Glycated Proteins. Diabetes, 2016, 65, 2060-2071.	0.3	10
45	<scp>GWAS</scp> analysis of handgrip and lower body strength in older adults in the <scp>CHARGE</scp> consortium. Aging Cell, 2016, 15, 792-800.	3.0	51
46	The genetic history of Cochin Jews from India. Human Genetics, 2016, 135, 1127-1143.	1.8	12
47	Genome-wide analysis identifies 12 loci influencing human reproductive behavior. Nature Genetics, 2016, 48, 1462-1472.	9.4	284
48	Differential burden of rare protein truncating variants in Alzheimer's disease patients compared to centenarians. Human Molecular Genetics, 2016, 25, ddw150.	1.4	10
49	Transancestral fine-mapping of four type 2 diabetes susceptibility loci highlights potential causal regulatory mechanisms. Human Molecular Genetics, 2016, 25, 2070-2081.	1.4	21
50	Expanded genetic screening panel for the Ashkenazi Jewish population. Genetics in Medicine, 2016, 18, 522-528.	1.1	33
51	Positive attitude toward life, emotional expression, self-rated health, and depressive symptoms among centenarians and near-centenarians. Aging and Mental Health, 2016, 20, 930-939.	1.5	41
52	Genome-Wide Scan Informed by Age-Related Disease Identifies Loci for Exceptional Human Longevity. PLoS Genetics, 2015, 11, e1005728.	1.5	128
53	Genetic variation in Sirtuin 1 (SIRT1) is associated with lipid profiles but not with longevity in Ashkenazi Jews. Translational Research, 2015, 165, 480-481.	2.2	9
54	Genetics, lifestyle and longevity: Lessons from centenarians. Applied & Translational Genomics, 2015, 4, 23-32.	2.1	90

#	Article	IF	Citations
55	Genotyping of geographically diverse Druze trios reveals substructure and a recent bottleneck. European Journal of Human Genetics, 2015, 23, 1093-1099.	1.4	10
56	The influence of gender on inheritance of exceptional longevity. Aging, 2015, 7, 412-418.	1.4	12
57	Identification of Genes Promoting Skin Youthfulness by Genome-Wide Association Study. Journal of Investigative Dermatology, 2014, 134, 651-657.	0.3	30
58	Novel candidate genes putatively involved in stress fracture predisposition detected by whole-exome sequencing. Genetical Research, 2014, 96, e004.	0.3	14
59	Genome-wide mapping of IBD segments in an Ashkenazi PD cohort identifies associated haplotypes. Human Molecular Genetics, 2014, 23, 4693-4702.	1.4	49
60	Sequencing an Ashkenazi reference panel supports population-targeted personal genomics and illuminates Jewish and European origins. Nature Communications, 2014, 5, 4835.	5.8	156
61	Disrupting Mitochondrial–Nuclear Coevolution Affects OXPHOS Complex I Integrity and Impacts Human Health. Genome Biology and Evolution, 2014, 6, 2665-2680.	1.1	68
62	Loss-of-function mutations in SLC30A8 protect against type 2 diabetes. Nature Genetics, 2014, 46, 357-363.	9.4	428
63	Clonal Hematopoiesis with Somatic Mutations Is a Common, Age-Related Condition Associated with Adverse Outcomes. Blood, 2014, 124, 840-840.	0.6	1
64	Association of telomere length (TL) with clinical outcomes in patients with colorectal carcinoma (CRC) Journal of Clinical Oncology, 2013, 31, 418-418.	0.8	0
65	Association of telomere length with clinical outcomes in patients with colorectal carcinoma Journal of Clinical Oncology, 2013, 31, e14540-e14540.	0.8	0
66	A Genome-Wide Scan of Ashkenazi Jewish Crohn's Disease Suggests Novel Susceptibility Loci. PLoS Genetics, 2012, 8, e1002559.	1.5	144
67	A genome-wide association study of aging. Neurobiology of Aging, 2011, 32, 2109.e15-2109.e28.	1.5	127
68	Obesity/diabetesâ€associated gene screening in rhesus monkeys. FASEB Journal, 2011, 25, 859.4.	0.2	0
69	Abraham's Children in the Genome Era: Major Jewish Diaspora Populations Comprise Distinct Genetic Clusters with Shared Middle Eastern Ancestry. American Journal of Human Genetics, 2010, 86, 850-859.	2.6	217
70	Genetic variation in human telomerase is associated with telomere length in Ashkenazi centenarians. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 1710-1717.	3.3	203
71	Genetic Predisposition to Elevated Serum Thyrotropin Is Associated with Exceptional Longevity. Journal of Clinical Endocrinology and Metabolism, 2009, 94, 4768-4775.	1.8	132
72	Extreme Longevity Is Associated with Increased Serum Thyrotropin. Journal of Clinical Endocrinology and Metabolism, 2009, 94, 1251-1254.	1.8	223

#	ARTICLE	IF	CITATION
73	Adiponectin Levels and Genotype: A Potential Regulator of Life Span in Humans. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2008, 63, 447-453.	1.7	121
74	Lipoprotein Genotype and Conserved Pathway for Exceptional Longevity in Humans. PLoS Biology, 2006, 4, e113.	2.6	197
75	Biological evidence for inheritance of exceptional longevity. Mechanisms of Ageing and Development, 2005, 126, 341-345.	2.2	100
76	Buffering Mechanisms in Aging: A systems approach towards uncovering the genetic component of aging. PLoS Computational Biology, 2005, preprint, e170.	1.5	2
77	Clinical Phenotype of Families with Longevity. Journal of the American Geriatrics Society, 2004, 52, 274-277.	1.3	174
78	Plasma HDL Levels Highly Correlate With Cognitive Function in Exceptional Longevity. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2002, 57, M712-M715.	1.7	130