Xizu Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9070005/publications.pdf Version: 2024-02-01

		43973	79541
181	7,344	48	73
papers	citations	h-index	g-index
182	182	182	7558
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Strategies to reduce the flammability of organic phase change Materials: A review. Solar Energy, 2022, 231, 115-128.	2.9	52
2	Surface modification of microencapsulated phase change materials with nanostructures for enhancement of their thermal conductivity. Materials Chemistry and Physics, 2022, 277, 125438.	2.0	32
3	Atomicâ€Level Metal Electrodeposition: Synthetic Strategies, Applications, and Catalytic Mechanism in Electrochemical Energy Conversion. Small Structures, 2022, 3, 2100185.	6.9	29
4	Achieving Enhanced Thermoelectric Performance in Multiphase Materials. Accounts of Materials Research, 2022, 3, 237-246.	5.9	23
5	Triazine derivatives as organic phase change materials with inherently low flammability. Journal of Materials Chemistry A, 2022, 10, 3633-3641.	5.2	27
6	A Dual-Surface Mechanism of Oxidant-Free Pyrrole Polymerization in the Two-Dimensional Titanium Carbide (MXene) Interlayer Nanospace. Journal of Physical Chemistry C, 2022, 126, 1316-1325.	1.5	5
7	Towards modulating the colour hues of isoindigo-based electrochromic polymers through variation of thiophene-based donor groups. Polymer Chemistry, 2022, 13, 967-981.	1.9	27
8	Shaping and Tuning Lighting Conditions in Controlled Environment Agriculture: A Review. ACS Agricultural Science and Technology, 2022, 2, 3-16.	1.0	23
9	Improved <i>zT</i> in Nb ₅ Ge ₃ –GeTe thermoelectric nanocomposite. Nanoscale, 2022, 14, 410-418.	2.8	16
10	Flexible elemental thermoelectrics with ultra-high power density. Materials Today Energy, 2022, 25, 100964.	2.5	20
11	Potential of Recycled Silicon and Silicon-Based Thermoelectrics for Power Generation. Crystals, 2022, 12, 307.	1.0	9
12	Polaron Delocalization Dependence of the Conductivity and the Seebeck Coefficient in Doped Conjugated Polymers. Journal of Physical Chemistry B, 2022, 126, 2073-2085.	1.2	5
13	Upcycling Silicon Photovoltaic Waste into Thermoelectrics. Advanced Materials, 2022, 34, e2110518.	11.1	25
14	Rapid UV-Curable Form-Stable Polyethylene-Glycol-Based Phase Change Material. ACS Applied Polymer Materials, 2022, 4, 2747-2756.	2.0	33
15	Atomicâ€Level Metal Electrodeposition: Synthetic Strategies, Applications, and Catalytic Mechanism in Electrochemical Energy Conversion. Small Structures, 2022, 3, .	6.9	2
16	Application of phase change materials in building components and the use of nanotechnology for its improvement. Energy and Buildings, 2022, 262, 112018.	3.1	47
17	A highly flexible form-stable silicone-octadecane PCM composite for heat harvesting. Materials Today Advances, 2022, 14, 100227.	2.5	20
18	Designing good compatibility factor in segmented Bi0.5Sb1.5Te3 – GeTe thermoelectrics for high power conversion efficiency. Nano Energy, 2022, 96, 107147.	8.2	24

#	Article	IF	CITATIONS
19	Facile Synthesis of Solubilizing a Group-Free, Solution-Processable <i>p</i> -Type Ladder Conjugated Polymer and Its Thermoelectric Properties. ACS Macro Letters, 2022, 11, 110-115.	2.3	13
20	Valence Disproportionation of GeS in the PbS Matrix Forms Pb ₅ Ge ₅ S ₁₂ Inclusions with Conduction Band Alignment Leading to High n-Type Thermoelectric Performance. Journal of the American Chemical Society, 2022, 144, 7402-7413.	6.6	24
21	AIE-active polymers for explosive detection. , 2022, , 555-582.		Ο
22	Gallium-Doped Zinc Oxide Nanostructures for Tunable Transparent Thermoelectric Films. ACS Applied Nano Materials, 2022, 5, 8631-8639.	2.4	13
23	Recent advances in nanotechnology-based functional coatings for the built environment. Materials Today Advances, 2022, 15, 100270.	2.5	30
24	Conjugated polymers for electrochromic applications. , 2022, , 539-573.		2
25	Enhanced near-room-temperature thermoelectric performance in GeTe. Rare Metals, 2022, 41, 3027-3034.	3.6	17
26	Strong Valence Band Convergence to Enhance Thermoelectric Performance in PbSe with Two Chemically Independent Controls. Angewandte Chemie, 2021, 133, 272-277.	1.6	7
27	Strong Valence Band Convergence to Enhance Thermoelectric Performance in PbSe with Two Chemically Independent Controls. Angewandte Chemie - International Edition, 2021, 60, 268-273.	7.2	28
28	Low-temperature processed, stable n-i-p perovskite solar cells with indene-C60-bisadduct as electron transport material. Journal of Materials Science: Materials in Electronics, 2021, 32, 12872-12880.	1.1	1
29	Recent advances in cation sensing using aggregation-induced emission. Materials Chemistry Frontiers, 2021, 5, 659-708.	3.2	99
30	Manufacturing of POSS-polymer nanocomposites. , 2021, , 27-51.		1
31	Strategies and concepts in n-doped conjugated polymer thermoelectrics. Journal of Materials Chemistry A, 2021, 9, 5149-5163.	5.2	34
32	Current Research Trends and Perspectives on Solid-State Nanomaterials in Hydrogen Storage. Research, 2021, 2021, 3750689.	2.8	45
33	High-performance & thermally stable n-type polymer thermoelectrics based on a benzyl viologen radical cation-doped ladder-type conjugated polymer. Journal of Materials Chemistry A, 2021, 9, 11787-11793.	5.2	22
34	Synthesis and optical and electronic properties of one-dimensional sulfoxonium-based hybrid metal halide (CH ₃) ₃ SOPbI ₃ . Chemical Communications, 2021, 57, 5790-5793.	2.2	0
35	Electron n-doping of a highly electron-deficient chlorinated benzodifurandione-based oligophenylene vinylene polymer using benzyl viologen radical cations. Materials Chemistry Frontiers, 2021, 5, 6182-6191.	3.2	4
36	Realizing zT Values of 2.0 in Cubic GeTe. ChemNanoMat, 2021, 7, 476-482.	1.5	35

#	Article	IF	CITATIONS
37	Bottom-Up Engineering Strategies for High-Performance Thermoelectric Materials. Nano-Micro Letters, 2021, 13, 119.	14.4	48
38	Tunable Nitrogen-Doping of Sulfur Host Nanostructures for Stable and Shuttle-Free Room-Temperature Sodium–Sulfur Batteries. Nano Letters, 2021, 21, 5401-5408.	4.5	36
39	High thermoelectric performance enabled by convergence of nested conduction bands in Pb7Bi4Se13 with low thermal conductivity. Nature Communications, 2021, 12, 4793.	5.8	53
40	Synthesis and Halochromic Properties of 1,2,6â€Tri―and 1,2,3,6â€Tetraâ€aryl Azulenes. ChemPlusChem, 2021, 86, 1116-1122.	1.3	2
41	Synthesis of Conjugated Polymers via Transition Metal Catalysed Câ~'H Bond Activation. Chemistry - an Asian Journal, 2021, 16, 2896-2919.	1.7	12
42	High-performance PEDOT:PSS-based thermoelectric composites. Composites Communications, 2021, 27, 100877.	3.3	37
43	Thermoelectric materials and transport physics. Materials Today Physics, 2021, 21, 100519.	2.9	77
44	Defect engineering in thermoelectric materials: what have we learned?. Chemical Society Reviews, 2021, 50, 9022-9054.	18.7	201
45	Simultaneous enhancements in the Seebeck coefficient and conductivity of PEDOT:PSS by blending ferroelectric BaTiO ₃ nanoparticles. Journal of Materials Chemistry A, 2021, 9, 16952-16960.	5.2	16
46	Suppressing Ge-vacancies to achieve high single-leg efficiency in GeTe with an ultra-high room temperature power factor. Journal of Materials Chemistry A, 2021, 9, 23335-23344.	5.2	38
47	High Thermoelectric Performance through Crystal Symmetry Enhancement in Triply Doped Diamondoid Compound Cu ₂ SnSe ₃ . Advanced Energy Materials, 2021, 11, 2100661.	10.2	39
48	Thermoelectric Performances of n-Doped Ladder-Type Conjugated Polymers Using Various Viologen Radical Cations. ACS Applied Polymer Materials, 2021, 3, 5596-5603.	2.0	7
49	A Systematic Approach for Semiconductor Half-Heusler. Frontiers in Materials, 2021, 8, .	1.2	8
50	Physical Intuition to Improve Electronic Properties of Thermoelectrics. Frontiers in Physics, 2021, 9, .	1.0	3
51	A simple green route to blue thermoelectric PEDOT: PSS. Applied Physics Letters, 2021, 119, 223904.	1.5	1
52	Rational Proteomic Analysis of a New Domesticated Klebsiella pneumoniae x546 Producing 1,3-Propanediol. Frontiers in Microbiology, 2021, 12, 770109.	1.5	3
53	Enhanced thermoelectric performance of poly(3,4â€ethylenedioxythiophene):poly(4â€styrenesulfonate) (PEDOT:PSS) with longâ€term humidity stability via sequential treatment with trifluoroacetic acid. Polymer International, 2020, 69, 84-92.	1.6	33
54	High Spin Pro-Quinoid Benzo[1,2-c;4,5-c′]bisthiadiazole Conjugated Polymers for High-Performance Solution-Processable Polymer Thermoelectrics. , 2020, 2, 147-152.		43

#	Article	IF	CITATIONS
55	Electrical property modified hole transport layer (PEDOT:PSS) enhance the efficiency of perovskite solar cells: Hybrid co-solvent post-treatment. Organic Electronics, 2020, 78, 105582.	1.4	20
56	High-Performance Thermoelectrics from Cellular Nanostructured Sb2Si2Te6. Joule, 2020, 4, 159-175.	11.7	103
57	Enhanced Thermoelectric Performance of Nanocrystalline Indium Tin Oxide Pellets by Modulating the Density and Nanoporosity Via Spark Plasma Sintering. ACS Applied Nano Materials, 2020, 3, 10156-10165.	2.4	35
58	Theoretical search for high-performance thermoelectric donor–acceptor copolymers: the role of super-exchange couplings. Journal of Materials Chemistry A, 2020, 8, 21852-21861.	5.2	22
59	Water-dispersible conducting polyazulene and its application in thermoelectrics. Chemical Communications, 2020, 56, 9388-9391.	2.2	33
60	Effective enhancement of thermoelectric and mechanical properties of germanium telluride <i>via</i> rhenium-doping. Journal of Materials Chemistry C, 2020, 8, 16940-16948.	2.7	38
61	Binary treatment of PEDOT:PSS films with nitric acid and imidazolium-based ionic liquids to improve the thermoelectric properties. Materials Advances, 2020, 1, 3233-3242.	2.6	18
62	The benzyl viologen radical cation: an effective n-dopant for poly(naphthalenediimide-bithiophene). Journal of Materials Chemistry A, 2020, 8, 18916-18924.	5.2	18
63	Tailoring the phase transition temperature to achieve high-performance cubic GeTe-based thermoelectrics. Journal of Materials Chemistry A, 2020, 8, 18880-18890.	5.2	61
64	Transparent flexible thin-film p–n junction thermoelectric module. Npj Flexible Electronics, 2020, 4, .	5.1	37
65	Benzyl viologen radical cation: an effective n-dopant for poly(perylenediimide-bithiophene). Journal of Materials Chemistry C, 2020, 8, 17261-17268.	2.7	13
66	Tuning the Electronic Structures of Multimetal Oxide Nanoplates to Realize Favorable Adsorption Energies of Oxygenated Intermediates. ACS Nano, 2020, 14, 17640-17651.	7.3	56
67	Achieving high thermoelectric quality factor toward high figure of merit in GeTe. Materials Today Physics, 2020, 14, 100239.	2.9	61
68	Solutionâ€Processable Copolymers Based on Triphenylamine and 3,4â€Ethylenedioxythiophene: Facile Synthesis and Multielectrochromism. Macromolecular Rapid Communications, 2020, 41, e2000156.	2.0	16
69	Carboxylic Acid Directed C–H Arylation of Azulene. Organic Letters, 2020, 22, 5009-5013.	2.4	21
70	Effect of substituents in sulfoxides on the enhancement of thermoelectric properties of PEDOT:PSS: experimental and modelling evidence. Molecular Systems Design and Engineering, 2020, 5, 976-984.	1.7	29
71	Dielectric dispersion and superior thermal characteristics in isotope-enriched hexagonal boron nitride thin films: evaluation as thermally self-dissipating dielectrics for GaN transistors. Journal of Materials Chemistry C, 2020, 8, 9558-9568.	2.7	4
72	Nitrogen-mediated aligned growth of hexagonal BN films for reliable high-performance InSe transistors. Journal of Materials Chemistry C, 2020, 8, 4421-4431.	2.7	5

#	Article	IF	CITATIONS
73	Modulating the Properties of Azuleneâ€containing Polymers Through Functionalization at the 2â€Position of Azulene. Chemistry - an Asian Journal, 2020, 15, 2505-2512.	1.7	13
74	Photoresponsive Thermoelectric Materials Derived from Fullerene-C ₆₀ PEDOT Hybrid Polymers. ACS Applied Energy Materials, 2020, 3, 6726-6734.	2.5	13
75	Sodium formaldehyde sulfoxylate, an ionic-type, water-soluble reducing reagent to effectively improve seebeck coefficient of PEDOT:PSS film. Organic Electronics, 2020, 81, 105682.	1.4	21
76	Significant Enhancement in the Seebeck Coefficient and Power Factor of p-Type Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate) through the Incorporation of n-Type MXene. ACS Applied Materials & Interfaces, 2020, 12, 13013-13020.	4.0	82
77	Modulation of the doping level of PEDOT:PSS film by treatment with hydrazine to improve the Seebeck coefficient. RSC Advances, 2020, 10, 1786-1792.	1.7	77
78	Origin of High Thermoelectric Performance in Earth-Abundant Phosphide–Tetrahedrite. ACS Applied Materials & Interfaces, 2020, 12, 9150-9157.	4.0	35
79	The Role of Electrostatic Interaction between Free Charge Carriers and Counterions in Thermoelectric Power Factor of Conducting Polymers: From Crystalline to Polycrystalline Domains. Advanced Theory and Simulations, 2020, 3, 2000015.	1.3	10
80	Azulene in Polymers and Their Properties. Chemistry - an Asian Journal, 2020, 15, 1904-1915.	1.7	32
81	Boosting efficient ambient nitrogen oxidation by a well-dispersed Pd on MXene electrocatalyst. Chemical Communications, 2020, 56, 5779-5782.	2.2	48
82	Recent Advances in Aggregation-Induced Emission Chemosensors for Anion Sensing. Molecules, 2019, 24, 2711.	1.7	65
83	Interfacing Epitaxial Dinickel Phosphide to 2D Nickel Thiophosphate Nanosheets for Boosting Electrocatalytic Water Splitting. ACS Nano, 2019, 13, 7975-7984.	7.3	171
84	Improved Alignment of PEDOT:PSS Induced by in-situ Crystallization of "Green―Dimethylsulfone Molecules to Enhance the Polymer Thermoelectric Performance. Frontiers in Chemistry, 2019, 7, 783.	1.8	36
85	High Figure of Merit in Gallium-Doped Nanostructured n-Type PbTe- <i>x</i> GeTe with Midgap States. Journal of the American Chemical Society, 2019, 141, 16169-16177.	6.6	76
86	Proquinoidal-Conjugated Polymer as an Effective Strategy for the Enhancement of Electrical Conductivity and Thermoelectric Properties. Chemistry of Materials, 2019, 31, 8543-8550.	3.2	43
87	Aggregation-induced emission (AIE)-active polymers for explosive detection. Polymer Chemistry, 2019, 10, 3822-3840.	1.9	120
88	Diversity of electron acceptor groups in donor–acceptor type electrochromic conjugated polymers. Solar Energy Materials and Solar Cells, 2019, 197, 32-75.	3.0	80
89	The role of fluoride in anion–π interaction with naphthalene diimide. Chemical Communications, 2019, 55, 6225-6228.	2.2	22
90	Self-Organization of PEDOT:PSS Induced by Green and Water-Soluble Organic Molecules. Journal of Physical Chemistry C, 2019, 123, 9745-9755.	1.5	32

#	Article	IF	CITATIONS
91	One-Dimensional Nanostructure Engineering of Conducting Polymers for Thermoelectric Applications. Applied Sciences (Switzerland), 2019, 9, 1422.	1.3	23
92	Solution-Based Synthesis and Processing of Metal Chalcogenides for Thermoelectric Applications. Applied Sciences (Switzerland), 2019, 9, 1511.	1.3	12
93	Effective ionic Seebeck component suppression in mixed ion-electron conductor via chemical treatment. Organic Electronics, 2019, 69, 7-12.	1.4	15
94	Viologen-Based Electrochromic Materials: From Small Molecules, Polymers and Composites to Their Applications. Polymers, 2019, 11, 1839.	2.0	127
95	Ionofluorochromic Nanoparticles Derived from Octapyrene-Modified Polyhedral Oligomeric Silsesquioxane Organic Frameworks for Fluoride-Ion Detection. ACS Applied Nano Materials, 2019, 2, 470-478.	2.4	18
96	High Thermoelectric Performance in Polycrystalline SnSe Via Dualâ€Doping with Ag/Na and Nanostructuring With Ag ₈ SnSe ₆ . Advanced Energy Materials, 2019, 9, 1803072.	10.2	98
97	Electroluminochromic Materials: From Molecules to Polymers. Polymers, 2019, 11, 98.	2.0	43
98	Improved Thermoelectric Properties and Environmental Stability of Conducting PEDOT:PSS Films Post-treated With Imidazolium Ionic Liquids. Frontiers in Chemistry, 2019, 7, 870.	1.8	35
99	Chapter 1. Introduction to Electrochromism. RSC Smart Materials, 2019, , 1-21.	0.1	12
100	Chapter 2. Fundamentals of Electrochromic Materials and Devices. RSC Smart Materials, 2019, , 22-50.	0.1	8
101	High-performance thermoelectric materials based on ternary TiO2/CNT/PANI composites. Physical Chemistry Chemical Physics, 2018, 20, 9411-9418.	1.3	55
102	Control of morphology and performance of diketopyrrolopyrrole-based electrochromic polymers using solvent vapor annealing. Journal of Polymer Research, 2018, 25, 1.	1.2	7
103	Influence of catalytic systems in Stille polymerization on the electrochromic performance of diketopyrrolopyrrole-based conjugated polymers. Materials Chemistry Frontiers, 2018, 2, 331-337.	3.2	20
104	A theoretical mechanistic study on electrical conductivity enhancement of DMSO treated PEDOT:PSS. Journal of Materials Chemistry C, 2018, 6, 5122-5131.	2.7	100
105	nâ€Type SnSe ₂ Orientedâ€Nanoplateâ€Based Pellets for High Thermoelectric Performance. Advanced Energy Materials, 2018, 8, 1702167.	10.2	103
106	BODIPYâ€Based Antiaromatic Macrocycles: Facile Synthesis by Knoevenagel Condensation and Unusual Aggregationâ€Enhanced Twoâ€Photon Absorption Properties. Chemistry - A European Journal, 2018, 24, 2232-2241.	1.7	21
107	Pinhole-free mixed perovskite film for bending durable mixed perovskite solar cells. Solar Energy Materials and Solar Cells, 2018, 175, 111-117.	3.0	26
108	Growth and in-plane undulations of GaAs/Ge superlattices on [001]-oriented Ge and GaAs substrates: formation of regular 3D island-in-network nanostructures. Journal of Materials Chemistry C, 2018, 6, 13059-13068.	2.7	9

#	Article	IF	CITATIONS
109	Thermoelectric Performance: Enhancement of Thermoelectric Performance in CuSbSe 2 Nanoplateâ€Based Pellets by Texture Engineering and Carrier Concentration Optimization (Small) Tj ETQq1 1	0.78 \$3 214 rg	BT2/Overlock
110	Asymmetric-Layered Tin Thiophosphate: An Emerging 2D Ternary Anode for High-Performance Sodium Ion Full Cell. ACS Nano, 2018, 12, 12902-12911.	7.3	45
111	Triphenylethylene- and Tetraphenylethylene-Functionalized 1,3-Bis(pyrrol-2-yl)squaraine Dyes: Synthesis, Aggregation-Caused Quenching to Aggregation-Induced Emission, and Thiol Detection. ACS Omega, 2018, 3, 16424-16435.	1.6	27
112	Poly(nickel-ethylenetetrathiolate) and Its Analogs: Theoretical Prediction of High-Performance Doping-Free Thermoelectric Polymers. Journal of the American Chemical Society, 2018, 140, 13200-13204.	6.6	39
113	Orbital-Engineering-Based Screening of π-Conjugated d ⁸ Transition-Metal Coordination Polymers for High-Performance n-Type Thermoelectric Applications. ACS Applied Materials & Interfaces, 2018, 10, 35306-35315.	4.0	32
114	Enhancement of Thermoelectric Performance in CuSbSe ₂ Nanoplateâ€Based Pellets by Texture Engineering and Carrier Concentration Optimization. Small, 2018, 14, e1803092.	5.2	17
115	Tuning the thermoelectric performance of π–d conjugated nickel coordination polymers through metal–ligand frontier molecular orbital alignment. Journal of Materials Chemistry A, 2018, 6, 19757-19766.	5.2	26
116	Mosaicâ€Structured Cobalt Nickel Thiophosphate Nanosheets Incorporated Nâ€doped Carbon for Efficient and Stable Electrocatalytic Water Splitting. Advanced Functional Materials, 2018, 28, 1805075.	7.8	57
117	Enhancement of thermoelectric performance of PEDOT:PSS films by post-treatment with a superacid. RSC Advances, 2018, 8, 18334-18340.	1.7	118
118	Recent advances in conducting poly(3,4-ethylenedioxythiophene):polystyrene sulfonate hybrids for thermoelectric applications. Journal of Materials Chemistry C, 2018, 6, 8858-8873.	2.7	78
119	High Thermoelectric Performance in Supersaturated Solid Solutions and Nanostructured nâ€Type PbTe–GeTe. Advanced Functional Materials, 2018, 28, 1801617.	7.8	92
120	Enhanced Thermoelectric Performance of PEDOT:PSS Films by Sequential Postâ€Treatment with Formamide. Macromolecular Materials and Engineering, 2018, 303, 1700429.	1.7	69
121	Efficient, large area organic photovoltaic modules with active layers processed with non-halogenated solvents in air. Organic Electronics, 2017, 43, 55-63.	1.4	21
122	Organic photovoltaic annealing process analysis using impedance spectroscopy. Solar Energy, 2017, 144, 367-375.	2.9	6
123	Ultra-high Seebeck coefficient and low thermal conductivity of a centimeter-sized perovskite single crystal acquired by a modified fast growth method. Journal of Materials Chemistry C, 2017, 5, 1255-1260.	2.7	101
124	Fully Printable Organic and Perovskite Solar Cells with Transfer-Printed Flexible Electrodes. ACS Applied Materials & Interfaces, 2017, 9, 18730-18738.	4.0	19
125	Inverseâ€Electronâ€Demand Diels–Alder Reactions: Principles and Applications. Chemistry - an Asian Journal, 2017, 12, 2142-2159.	1.7	66
126	2D Black Phosphorus for Energy Storage and Thermoelectric Applications. Small, 2017, 13, 1700661.	5.2	139

#	Article	IF	CITATIONS
127	Enhancing the electrochromic performance of conjugated polymers using thermal nanoimprint lithography. RSC Advances, 2017, 7, 49119-49124.	1.7	9
128	Designing hybrid architectures for advanced thermoelectric materials. Materials Chemistry Frontiers, 2017, 1, 2457-2473.	3.2	34
129	Poly(ferrocenylsilane) electrolytes as a gold nanoparticle foundry: "two-in-one―redox synthesis and electrosteric stabilization, and sensing applications. Nanoscale, 2017, 9, 19255-19262.	2.8	26
130	A polymer transistor array with a pressure-sensitive elastomer for electronic skin. Journal of Materials Chemistry C, 2017, 5, 12039-12043.	2.7	16
131	Triphenylethylenyl-based donor–acceptor–donor molecules: studies on structural and optical properties and AIE properties for cyanide detection. Journal of Materials Chemistry C, 2017, 5, 12194-12203.	2.7	53
132	Prolonged lifetime of polymer solar cells with amphiphilic monolayers modified cathodes. Organic Electronics, 2017, 49, 368-374.	1.4	1
133	Aggregationâ€induced emission active 3,6â€bis(1,2,2â€triphenylvinyl)carbazole and bis(4â€(1,2,2â€triphenylvinyl)phenyl)amineâ€based poly(acrylates) for explosive detection. Journal of Polymer Science Part A, 2017, 55, 672-681.	2.5	25
134	Polyhedral oligomeric silsesquioxane-based hybrid materials and their applications. Materials Chemistry Frontiers, 2017, 1, 212-230.	3.2	254
135	Multifunctional 0D–2D Ni ₂ P Nanocrystals–Black Phosphorus Heterostructure. Advanced Energy Materials, 2017, 7, 1601285.	10.2	149
136	Cubic Polyhedral Oligomeric Silsesquioxane Based Functional Materials: Synthesis, Assembly, and Applications. Chemistry - an Asian Journal, 2016, 11, 1322-1337.	1.7	142
137	Low Bandgap Conjugated Polymers Based on a Nature-Inspired Bay-Annulated Indigo (BAI) Acceptor as Stable Electrochromic Materials. ACS Sustainable Chemistry and Engineering, 2016, 4, 2797-2805.	3.2	64
138	Diketopyrrolopyrrole-Based Low-Bandgap Conjugated Polymers with Siloxane Side Chains for Electrochromic Applications. Australian Journal of Chemistry, 2016, 69, 403.	0.5	9
139	Poly(triphenyl ethene) and poly(tetraphenyl ethene): synthesis, aggregation-induced emission property and application as paper sensors for effective nitro-compounds detection. Polymer Chemistry, 2016, 7, 6309-6317.	1.9	50
140	Tetraphenylethene (TPE) modified polyhedral oligomeric silsesquioxanes (POSS): unadulterated monomer emission, aggregation-induced emission and nanostructural self-assembly modulated by the flexible spacer between POSS and TPE. Chemical Communications, 2016, 52, 12478-12481.	2.2	46
141	Cyclization of Tetraaryl-Substituted Benzoquinones and Hydroquinones through the Scholl Reaction. Journal of Organic Chemistry, 2016, 81, 9219-9226.	1.7	7
142	Conjugated polymer-based electrochromics: materials, device fabrication and application prospects. Journal of Materials Chemistry C, 2016, 4, 7364-7376.	2.7	186
143	Simultaneously enhancement of quantum efficiency and color purity by molecular design in star-shaped solution-processed blue emitters. Organic Electronics, 2016, 37, 14-23.	1.4	4
144	Modulating high-energy visible light absorption to attain neutral-state black electrochromic polymers. Journal of Materials Chemistry C, 2016, 4, 28-32.	2.7	75

#	Article	IF	CITATIONS
145	Effects of Chemical Composition, Film Thickness, and Morphology on the Electrochromic Properties of Donor–Acceptor Conjugated Copolymers Based on Diketopyrrolopyrrole. ChemPlusChem, 2015, 80, 1298-1305.	1.3	31
146	Towards <i>meso</i> â€Ester BODIPYs with Aggregationâ€Induced Emission Properties: The Effect of Substitution Positions. Chemistry - an Asian Journal, 2015, 10, 1631-1634.	1.7	41
147	Low band-gap diketopyrrolopyrrole-containing polymers for near infrared electrochromic and photovoltaic applications. Journal of Polymer Science Part A, 2015, 53, 1287-1295.	2.5	28
148	Solution-processable low-bandgap 3-fluorothieno[3,4-b]thiophene-2-carboxylate-based conjugated polymers for electrochromic applications. RSC Advances, 2015, 5, 96328-96335.	1.7	8
149	Organic photovoltaic initial stage degradation analysis using impedance spectroscopy. Synthetic Metals, 2015, 202, 63-67.	2.1	6
150	Elimination of Burn-in Open-Circuit Voltage Degradation by ZnO Surface Modification in Organic Solar Cells. ACS Applied Materials & amp; Interfaces, 2015, 7, 1608-1615.	4.0	45
151	Soluble bipolar star-shaped molecule as highly stable and efficient blue light emitter. RSC Advances, 2015, 5, 15399-15406.	1.7	12
152	4,9-Dihydro-s-indaceno[1,2-b:5,6-b']dithiophene-embedded electrochromic conjugated polymers with high coloration efficiency and fast coloration time. Solar Energy Materials and Solar Cells, 2015, 136, 92-99.	3.0	33
153	Effects of fluorination on the electrochromic performance of benzothiadiazole-based donor–acceptor copolymers. Journal of Materials Chemistry C, 2015, 3, 5589-5597.	2.7	65
154	Aggregation induced emission based fluorescence pH and temperature sensors: probing polymer interactions in poly(N-isopropyl acrylamide-co-tetra(phenyl)ethene acrylate)/poly(methacrylic acid) interpenetrating polymer networks. Journal of Materials Chemistry C, 2015, 3, 5490-5498.	2.7	72
155	A thermally stable and reversible microporous hydrogen-bonded organic framework: aggregation induced emission and metal ion-sensing properties. Journal of Materials Chemistry C, 2015, 3, 11874-11880.	2.7	76
156	Ultrahigh electron-deficient pyrrolo-acenaphtho-pyridazine-dione based donor–acceptor conjugated polymers for electrochromic applications. Polymer Chemistry, 2015, 6, 7570-7579.	1.9	28
157	Low band-gap weak donor–strong acceptor conjugated polymer for organic solar cell. RSC Advances, 2015, 5, 98876-98879.	1.7	7
158	Pyrrolophthalazine dione (PPD)-based donor–acceptor polymers as high performance electrochromic materials. Polymer Chemistry, 2015, 6, 1487-1494.	1.9	36
159	Electrospun aggregation-induced emission active POSS-based porous copolymer films for detection of explosives. Chemical Communications, 2014, 50, 13785-13788.	2.2	87
160	Synthesis of Ultrahighly Electron-Deficient Pyrrolo[3,4- <i>d</i>]pyridazine-5,7-dione by Inverse Electron Demand Diels–Alder Reaction and Its Application as Electrochromic Materials. Organic Letters, 2014, 16, 6386-6389.	2.4	51
161	Enhancement of the performance of organic solar cells by electrospray deposition with optimal solvent system. Solar Energy Materials and Solar Cells, 2014, 121, 119-125.	3.0	49
162	Electrofluorochromic detection of cyanide anions using a benzothiadiazole-containing conjugated copolymer. Chemical Communications, 2014, 50, 655-657.	2.2	58

#	Article	IF	CITATIONS
163	Poly(acrylate) with a tetraphenylethene pendant with aggregation-induced emission (AIE) characteristics: highly stable AIE-active polymer nanoparticles for effective detection of nitro compounds. Polymer Chemistry, 2014, 5, 5628.	1.9	94
164	Enhanced absorbance and electron collection in inverted organic solar cells: Optical admittance and transient photocurrent analyses. Organic Electronics, 2014, 15, 1306-1311.	1.4	31
165	Solution-processable blue-to-transmissive electrochromic benzotriazole-containing conjugated polymers. Polymer Chemistry, 2013, 4, 4663.	1.9	54
166	Black-to-transmissive electrochromism of azulene-based donor–acceptor copolymers complemented by poly(4-styrene sulfonic acid)-doped poly(3,4-ethylenedioxythiophene). Organic Electronics, 2013, 14, 2748-2755.	1.4	57
167	Electrochromic π-Conjugated Copolymers Derived from Azulene, Fluorene, and Dialkyloxybenzothiadiazole. Australian Journal of Chemistry, 2013, 66, 1048.	0.5	17
168	Degradation mechanisms in organic solar cells: Localized moisture encroachment and cathode reaction. Solar Energy Materials and Solar Cells, 2012, 104, 1-6.	3.0	93
169	Dual nanostructures in poly (3-hexylthiophene) based organic photovoltaics under alternative current electric field. Thin Solid Films, 2012, 520, 5770-5774.	0.8	4
170	Organic–inorganic hybrid liquid crystals derived from octameric silsesquioxanes. Effect of the peripheral groups in mesogens on the formation of liquid crystals. Journal of Materials Chemistry, 2011, 21, 5248.	6.7	39
171	Performance enhancement in organic photovoltaic devices using plasma-polymerized fluorocarbon-modified Ag nanoparticles. Organic Electronics, 2011, 12, 1943-1947.	1.4	14
172	Organic photovoltaic power conversion efficiency improved by AC electric field alignment during fabrication. Applied Physics Letters, 2011, 99, 053305.	1.5	23
173	Efficient Semitransparent Bulk-Heterojunction Organic Photovoltaic Cells With High-Performance Low Processing Temperature Indium–Tin Oxide Top Electrode. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16, 1685-1689.	1.9	21
174	Synthesis, Electronic, and Emission Spectroscopy, and Electrochromic Characterization of Azuleneâ^'Fluorene Conjugated Oligomers and Polymers. Macromolecules, 2009, 42, 5534-5544.	2.2	91
175	Thermally Stable Blue-Light-Emitting Hybrid Organicâ ``Inorganic Polymers Derived from Cyclotriphosphazene. Macromolecules, 2008, 41, 9624-9636.	2.2	40
176	Effect of Transannular ï€â~'ï€ Interaction on Emission Spectral Shift and Fluorescence Quenching in Dithia[3.3]paracyclophaneâ~'Fluorene Copolymers. Macromolecules, 2006, 39, 7277-7285.	2.2	43
177	Alternating Aromatic and Transannular Chromophores with and without Linker:Â Effect of Transannular ï€â~'Ĩ€ Interaction on the Optical Property of Dithiaparacyclophane-based Copolymers. Macromolecules, 2004, 37, 3546-3553.	2.2	43
178	Variable Ion Selectivity in [n.3.3](1,3,5)Crownophanes: The "Breathing―Process. Organic Letters, 2003, 5, 2781-2784.	2.4	20
179	Alternating Conjugated and Transannular Chromophores:  Tunable Property of Fluorene-Paracyclophane Copolymers via Transannular Ï€â~Ï€ Interaction. Organic Letters, 2003, 5, 2765-2768.	2.4	53
180	A Unique Spherical Molecular Host withD2dSymmetry. A Novel Intramolecular Kinetic Equilibrium in Metal Ion Complexation between Two Crown Ethers. Organic Letters, 2002, 4, 3911-3914.	2.4	4

#	Article	IF	CITATIONS
181	Synthesis, Complexation, and Supramolecular Assembly of 21,30-Dithia-17,25-dimethyl-1,4,7,10,13- pentaoxa[13.3.3](1,2,6)cyclophaneâ€. Organic Letters, 2002, 4, 3211-3214.	2.4	17