Dong Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9069936/publications.pdf

Version: 2024-02-01

29994 49773 10,921 398 54 87 citations g-index h-index papers

404 404 404 9017 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies. Lab on A Chip, $2011, 11, 3656$.	3.1	372
2	Position synchronization of multiple motion axes with adaptive coupling control. Automatica, 2003, 39, 997-1005.	3.0	260
3	Superhydrophobic-like tunable droplet bouncing on slippery liquid interfaces. Nature Communications, 2015, 6, 7986.	5.8	229
4	Leader-Follower Formation Control of Multiple Non-holonomic Mobile Robots Incorporating a Receding-horizon Scheme. International Journal of Robotics Research, 2010, 29, 727-747.	5.8	206
5	Enclosing a target by nonholonomic mobile robots with bearing-only measurements. Automatica, 2015, 53, 400-407.	3.0	199
6	Adaptive synchronized control for coordination of multirobot assembly tasks. IEEE Transactions on Automation Science and Engineering, 2002, 18, 498-510.	2.4	193
7	Moving Groups of Microparticles Into Array With a Robot–Tweezers Manipulation System. IEEE Transactions on Robotics, 2012, 28, 1069-1080.	7.3	193
8	A Synchronization Approach to Trajectory Tracking of Multiple Mobile Robots While Maintaining Time-Varying Formations. IEEE Transactions on Robotics, 2009, 25, 1074-1086.	7.3	187
9	Robotic Cell Injection System With Position and Force Control: Toward Automatic Batch Biomanipulation. IEEE Transactions on Robotics, 2009, 25, 727-737.	7.3	185
10	A Model-Free Cross-Coupled Control for Position Synchronization of Multi-Axis Motions: Theory and Experiments. IEEE Transactions on Control Systems Technology, 2007, 15, 306-314.	3.2	170
11	Automatic transportation of biological cells with a robot-tweezer manipulation system. International Journal of Robotics Research, 2011, 30, 1681-1694.	5.8	165
12	Flexible Fiber-Shaped Supercapacitor Based on Nickel–Cobalt Double Hydroxide and Pen Ink Electrodes on Metallized Carbon Fiber. ACS Applied Materials & Duble Hydroxide and Pen Ink Electrodes on Metallized Carbon Fiber. ACS Applied Materials & Duble Hydroxide and Pen Ink Electrodes	4.0	147
13	Mechanical Characterization of Human Red Blood Cells Under Different Osmotic Conditions by Robotic Manipulation With Optical Tweezers. IEEE Transactions on Biomedical Engineering, 2010, 57, 1816-1825.	2.5	146
14	Slewing and vibration control of a single-link flexible manipulator by positive position feedback (PPF). Mechatronics, 2005, 15, 487-503.	2.0	143
15	Design of an enhanced nonlinear PID controller. Mechatronics, 2005, 15, 1005-1024.	2.0	143
16	Comments on Active Disturbance Rejection Control. IEEE Transactions on Industrial Electronics, 2007, 54, 3428-3429.	5.2	142
17	H/sub /spl infin// controller synthesis of fuzzy dynamic systems based on piecewise Lyapunov functions and bilinear matrix inequalities. IEEE Transactions on Fuzzy Systems, 2005, 13, 94-103.	6.5	141
18	Integration of saturated PI synchronous control and PD feedback for control of parallel manipulators., 2006, 22, 202-207.		134

#	Article	IF	CITATIONS
19	Microfluidic Single-Cell Manipulation and Analysis: Methods and Applications. Micromachines, 2019, 10, 104.	1.4	131
20	Minimizing Energy Consumption of Wheeled Mobile Robots via Optimal Motion Planning. IEEE/ASME Transactions on Mechatronics, 2014, 19, 401-411.	3.7	128
21	Two-Stage Energy Management Control of Fuel Cell Plug-In Hybrid Electric Vehicles Considering Fuel Cell Longevity. IEEE Transactions on Vehicular Technology, 2012, 61, 498-508.	3.9	114
22	A PZT actuator control of a single-link flexible manipulator based on linear velocity feedback and actuator placement. Mechatronics, 2004, 14, 381-401.	2.0	108
23	Coordinated Motion Planning for Multiple Mobile Robots Along Designed Paths With Formation Requirement. IEEE/ASME Transactions on Mechatronics, 2011, 16, 1021-1031.	3.7	104
24	Energy Management Control of Microturbine-Powered Plug-In Hybrid Electric Vehicles Using the Telemetry Equivalent Consumption Minimization Strategy. IEEE Transactions on Vehicular Technology, 2011, 60, 4238-4248.	3.9	103
25	Mechanical force characterization in manipulating live cells with optical tweezers. Journal of Biomechanics, 2011, 44, 741-746.	0.9	98
26	Development of a Tracked Climbing Robot. Journal of Intelligent and Robotic Systems: Theory and Applications, 2002, 35, 427-443.	2.0	97
27	Visual-Based Impedance Control of Out-of-Plane Cell Injection Systems. IEEE Transactions on Automation Science and Engineering, 2009, 6, 565-571.	3.4	96
28	Dynamic trapping and manipulation of biological cells with optical tweezers. Automatica, 2013, 49, 1614-1625.	3.0	95
29	Dynamics Analysis and Motion Planning for Automated Cell Transportation With Optical Tweezers. IEEE/ASME Transactions on Mechatronics, 2013, 18, 706-713.	3.7	94
30	Mechanical Modeling of Biological Cells in Microinjection. IEEE Transactions on Nanobioscience, 2008, 7, 257-266.	2.2	93
31	Single Cell Transfection through Precise Microinjection with Quantitatively Controlled Injection Volumes. Scientific Reports, 2016, 6, 24127.	1.6	84
32	Development of Magnetâ€Driven and Imageâ€Guided Degradable Microrobots for the Precise Delivery of Engineered Stem Cells for Cancer Therapy. Small, 2020, 16, e1906908.	5.2	84
33	Force Sensing and Manipulation Strategy in Robot-Assisted Microinjection on Zebrafish Embryos. IEEE/ASME Transactions on Mechatronics, 2011, 16, 1002-1010.	3.7	83
34	Two-Stage Charging Strategy for Plug-In Electric Vehicles at the Residential Transformer Level. IEEE Transactions on Smart Grid, 2013, 4, 1442-1452.	6.2	80
35	Modified input shaping for a rotating single-link flexible manipulator. Journal of Sound and Vibration, 2005, 285, 187-207.	2.1	78
36	Development of a New Robot Controller Architecture with FPGA-Based IC Design for Improved High-Speed Performance. IEEE Transactions on Industrial Informatics, 2007, 3, 312-321.	7.2	77

#	Article	IF	Citations
37	Hand Motion Classification Using a Multi-Channel Surface Electromyography Sensor. Sensors, 2012, 12, 1130-1147.	2.1	76
38	A Simple Nonlinear Velocity Estimator for High-Performance Motion Control. IEEE Transactions on Industrial Electronics, 2005, 52, 1161-1169.	5.2	75
39	Force Modeling, Identification, and Feedback Control of Robot-Assisted Needle Insertion: A Survey of the Literature. Sensors, 2018, 18, 561.	2.1	74
40	Distributed control for uniform circumnavigation of ring-coupled unicycles. Automatica, 2015, 53, 23-29.	3.0	73
41	Graphene-Bridged Multifunctional Flexible Fiber Supercapacitor with High Energy Density. ACS Applied Materials & Density. ACS Applie	4.0	73
42	Localization for Multirobot Formations in Indoor Environment. IEEE/ASME Transactions on Mechatronics, 2010, 15, 561-574.	3.7	71
43	Probing the mechanobiological properties of human embryonic stem cells in cardiac differentiation by optical tweezers. Journal of Biomechanics, 2012, 45, 123-128.	0.9	67
44	A bounded controller for multirobot navigation while maintaining network connectivity in the presence of obstacles. Automatica, 2013, 49, 285-292.	3.0	65
45	Experimental Comparison of Control Approaches on Trajectory Tracking Control of a 3-DOF Parallel Robot. IEEE Transactions on Control Systems Technology, 2007, 15, 982-988.	3.2	64
46	A High-Throughput Automated Microinjection System for Human Cells With Small Size. IEEE/ASME Transactions on Mechatronics, 2016, 21, 838-850.	3.7	64
47	Observer-Based Optical Manipulation of Biological Cells With Robotic Tweezers. IEEE Transactions on Robotics, 2014, 30, 68-80.	7.3	62
48	Model Identification of a Micro Air Vehicle in Loitering Flight Based on Attitude Performance Evaluation. Journal of the American College of Radiology, 2004, 20, 702-712.	0.9	61
49	Asymptotic trajectory tracking of manipulators using uncalibrated visual feedback. IEEE/ASME Transactions on Mechatronics, 2003, 8, 87-98.	3.7	60
50	Out-of-Plane Rotation Control of Biological Cells With a Robot-Tweezers Manipulation System for Orientation-Based Cell Surgery. IEEE Transactions on Biomedical Engineering, 2019, 66, 199-207.	2.5	60
51	Modeling and performance evaluation of traveling-wave piezoelectric ultrasonic motors with analytical method. Sensors and Actuators A: Physical, 2002, 100, 84-93.	2.0	57
52	H/sub /spl infin// output feedback control of discrete-time fuzzy systems with application to chaos control. IEEE Transactions on Fuzzy Systems, 2005, 13, 531-543.	6.5	57
53	Liquid metal droplet robot. Applied Materials Today, 2020, 19, 100597.	2.3	57
54	Rapidly Exploring Random Tree Algorithm-Based Path Planning for Robot-Aided Optical Manipulation of Biological Cells. IEEE Transactions on Automation Science and Engineering, 2014, 11, 649-657.	3.4	56

#	Article	IF	CITATIONS
55	A dynamic priority based path planning for cooperation of multiple mobile robots in formation forming. Robotics and Computer-Integrated Manufacturing, 2014, 30, 589-596.	6.1	56
56	Highâ€Entropy Alloy (HEA)â€Coated Nanolattice Structures and Their Mechanical Properties. Advanced Engineering Materials, 2018, 20, 1700625.	1.6	56
57	Development of an Enhanced Electromagnetic Actuation System With Enlarged Workspace. IEEE/ASME Transactions on Mechatronics, 2017, 22, 2265-2276.	3.7	55
58	Micro Air Vehicle: Configuration, Analysis, Fabrication, and Test. IEEE/ASME Transactions on Mechatronics, 2004, 9, 108-117.	3.7	53
59	A universal piezo-driven ultrasonic cell microinjection system. Biomedical Microdevices, 2011, 13, 743-752.	1.4	53
60	Approaches to Robust Filtering Design of Discrete Time Fuzzy Dynamic Systems. IEEE Transactions on Fuzzy Systems, 2008, 16, 331-340.	6.5	50
61	Automated Translational and Rotational Control of Biological Cells With a Robot-Aided Optical Tweezers Manipulation System. IEEE Transactions on Automation Science and Engineering, 2016, 13, 543-551.	3.4	50
62	A simplified sheathless cell separation approach using combined gravitational-sedimentation-based prefocusing and dielectrophoretic separation. Lab on A Chip, 2018, 18, 1521-1532.	3.1	50
63	An approach to quantized consensus of continuous-time linear multi-agent systems. Automatica, 2018, 91, 98-104.	3.0	50
64	A Novel Arch-Shape Nanogenerator Based on Piezoelectric and Triboelectric Mechanism for Mechanical Energy Harvesting. Nanomaterials, 2015, 5, 36-46.	1.9	49
65	Activation of multiple signaling pathways during the differentiation of mesenchymal stem cells cultured in a silicon nanowire microenvironment. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, 1153-1163.	1.7	48
66	Reorganization of Cytoskeleton and Transient Activation of Ca2+ Channels in Mesenchymal Stem Cells Cultured on Silicon Nanowire Arrays. ACS Applied Materials & Samp; Interfaces, 2013, 5, 13295-13304.	4.0	47
67	Three-dimensional cell manipulation and patterning using dielectrophoresis via a multi-layer scaffold structure. Lab on A Chip, 2015, 15, 920-930.	3.1	47
68	Microstructure, Mechanical and Corrosion Behaviors of CoCrFeNiAl0.3 High Entropy Alloy (HEA) Films. Coatings, 2017, 7, 156.	1.2	47
69	Gradient-Enhanced Electromagnetic Actuation System With a New Core Shape Design for Microrobot Manipulation. IEEE Transactions on Industrial Electronics, 2020, 67, 4700-4710.	5 . 2	47
70	Multilevel-based topology design and shape control of robot swarms. Automatica, 2012, 48, 3122-3127.	3.0	46
71	Modeling and Impedance Control of a Two-Manipulator System Handling a Flexible Beam. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 1997, 119, 736-742.	0.9	45
72	Manipulating rigid payloads with multiple robots using compliant grippers. IEEE/ASME Transactions on Mechatronics, 2002, 7, 23-34.	3.7	45

#	Article	IF	CITATIONS
73	A Synchronization Approach for the Minimization of Contouring Errors of CNC Machine Tools. IEEE Transactions on Automation Science and Engineering, 2009, 6, 720-729.	3.4	45
74	Stabilizing a flexible beam handled by two manipulators via PD feedback. IEEE Transactions on Automatic Control, 2000, 45, 2159-2164.	3.6	44
75	Vision-Based 2-D Automatic Micrograsping Using Coarse-to-Fine Grasping Strategy. IEEE Transactions on Industrial Electronics, 2008, 55, 3324-3331.	5.2	44
76	Design of a robust unified controller for cell manipulation with a robot-aided optical tweezers system. Automatica, 2015, 55, 279-286.	3.0	44
77	Control of a rotating cantilever beam using a torque actuator and a distributed piezoelectric polymer actuator. Applied Acoustics, 2002, 63, 885-899.	1.7	43
78	Resource constrained multirobot task allocation based on leader–follower coalition methodology. International Journal of Robotics Research, 2011, 30, 1423-1434.	5.8	43
79	Coalition-Based Approach to Task Allocation of Multiple Robots With Resource Constraints. IEEE Transactions on Automation Science and Engineering, 2012, 9, 516-528.	3.4	43
80	Direct measurement of cell protrusion force utilizing a robot-aided cell manipulation system with optical tweezers for cell migration control. International Journal of Robotics Research, 2014, 33, 1782-1792.	5.8	43
81	<italic>In Vivo</italic> Manipulation of Single Biological Cells With an Optical Tweezers-Based Manipulator and a Disturbance Compensation Controller. IEEE Transactions on Robotics, 2017, 33, 1200-1212.	7.3	43
82	Design for Robust Component Synthesis Vibration Suppression of Flexible Structures With On–Off Actuators. IEEE Transactions on Automation Science and Engineering, 2004, 20, 512-525.	2.4	42
83	Global Stability of a Saturated Nonlinear PID Controller for Robot Manipulators. IEEE Transactions on Control Systems Technology, 2009, 17, 892-899.	3.2	42
84	Cell manipulation tool with combined microwell array and optical tweezers for cell isolation and deposition. Journal of Micromechanics and Microengineering, 2013, 23, 075006.	1.5	41
85	A fluorescent microbead-based microfluidic immunoassay chip for immune cell cytokine secretion quantification. Lab on A Chip, 2018, 18, 522-531.	3.1	41
86	Adaptive Synchronization Control of Multiple Spacecraft Formation Flying. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 2007, 129, 337-342.	0.9	40
87	Achieving Automated Organelle Biopsy on Small Single Cells Using a Cell Surgery Robotic System. IEEE Transactions on Biomedical Engineering, 2019, 66, 2210-2222.	2.5	40
88	Characterizing Mechanical Properties of Biological Cells by Microinjection. IEEE Transactions on Nanobioscience, 2010, 9, 171-180.	2.2	39
89	Trajectory Tracking Control for a 3-DOF Planar Parallel Manipulator Using the Convex Synchronized Control Method. IEEE Transactions on Control Systems Technology, 2008, 16, 613-623.	3.2	38
90	Rendezvous of unicycles: A bearings-only and perimeter shortening approach. Systems and Control Letters, 2013, 62, 401-407.	1.3	38

#	Article	IF	Citations
91	Combined power management/design optimization for a fuel cell/battery plug-in hybrid electric vehicle using multi-objective particle swarm optimization. International Journal of Automotive Technology, 2014, 15, 645-654.	0.7	38
92	Robust Control to Manipulate a Microparticle with Electromagnetic Coil System. IEEE Transactions on Industrial Electronics, 2017, 64, 8566-8577.	5.2	38
93	Automated <i>In Vivo</i> Navigation of Magnetic-Driven Microrobots Using OCT Imaging Feedback. IEEE Transactions on Biomedical Engineering, 2020, 67, 2349-2358.	2.5	38
94	Rationally designed nickel oxide ravines@iron cobalt-hydroxides with largely enhanced capacitive performance for asymmetric supercapacitors. Journal of Materials Chemistry A, 2017, 5, 16944-16952.	5. 2	37
95	Magnetically Driven Undulatory Microswimmers Integrating Multiple Rigid Segments. Small, 2019, 15, e1901197.	5. 2	37
96	Transportation of Multiple Biological Cells Through Saturation-Controlled Optical Tweezers In Crowded Microenvironments. IEEE/ASME Transactions on Mechatronics, 2016, 21, 888-899.	3.7	36
97	Soft Gripper Design Based on the Integration of Flat Dry Adhesive, Soft Actuator, and Microspine. IEEE Transactions on Robotics, 2021, 37, 1065-1080.	7.3	36
98	Laser-induced fusion of human embryonic stem cells with optical tweezers. Applied Physics Letters, 2013, 103, 033701.	1.5	35
99	Development and application of ultrasonic surgical instruments. IEEE Transactions on Biomedical Engineering, 1997, 44, 462-467.	2.5	34
100	Generalized H/sub 2/ controller synthesis of fuzzy dynamic systems based on piecewise lyapunov functions. IEEE Transactions on Circuits and Systems Part 1: Regular Papers, 2002, 49, 1843-1850.	0.1	33
101	Biophysical characterization of hematopoietic cells from normal and leukemic sources with distinct primitiveness. Applied Physics Letters, 2011, 99, 083702.	1.5	33
102	Fiber Surface Modification Technology for Fiber-Optic Localized Surface Plasmon Resonance Biosensors. Sensors, 2012, 12, 2729-2741.	2.1	33
103	A Dynamic Model of Chemoattractant-Induced Cell Migration. Biophysical Journal, 2015, 108, 1645-1651.	0.2	33
104	Cell migration microfluidics for electrotaxis-based heterogeneity study of lung cancer cells. Biosensors and Bioelectronics, 2017, 89, 837-845.	5. 3	33
105	Development of a MEMS based colloid thruster with sandwich structure. Sensors and Actuators A: Physical, 2005, 117, 168-172.	2.0	32
106	Influence of semiflexible structural features of actin cytoskeleton on cell stiffness based on actin microstructural modeling. Journal of Biomechanics, 2012, 45, 1900-1908.	0.9	32
107	Applying Combined Optical Tweezers and Fluorescence Microscopy Technologies to Manipulate Cell Adhesions for Cell-to-Cell Interaction Study. IEEE Transactions on Biomedical Engineering, 2013, 60, 2308-2315.	2,5	32
108	Multilevel-Based Topology Design and Cell Patterning With Robotically Controlled Optical Tweezers. IEEE Transactions on Control Systems Technology, 2015, 23, 176-185.	3.2	32

#	Article	IF	CITATIONS
109	Design of an Interactive Control System for a Multisection Continuum Robot. IEEE/ASME Transactions on Mechatronics, 2018, 23, 2379-2389.	3.7	32
110	Magnetically Powered Biodegradable Microswimmers. Micromachines, 2020, 11, 404.	1.4	32
111	Application of a Service Climbing Robot with Motion Planning and Visual Sensing. Journal of Field Robotics, 2003, 20, 189-199.	0.7	31
112	A visual sensing application to a climbing cleaning robot on the glass surface. Mechatronics, 2004, 14, 1089-1104.	2.0	31
113	Adaptive Synchronized Control for a Planar Parallel Manipulator: Theory and Experiments. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 2006, 128, 976-979.	0.9	31
114	Optimal motion planning of a mobile robot with minimum energy consumption. , 2011, , .		30
115	Motion Planning and Robust Control for the Endovascular Navigation of a Microrobot. IEEE Transactions on Industrial Informatics, 2020, 16, 4557-4566.	7.2	30
116	Effects of direct current electric fields on lung cancer cell electrotaxis in a PMMA-based microfluidic device. Analytical and Bioanalytical Chemistry, 2017, 409, 2163-2178.	1.9	29
117	Revealing elasticity of largely deformed cells flowing along confining microchannels. RSC Advances, 2018, 8, 1030-1038.	1.7	29
118	Saturated PID Control for the Optical Manipulation of Biological Cells. IEEE Transactions on Control Systems Technology, 2018, 26, 1909-1916.	3.2	29
119	Automated Pairing Manipulation of Biological Cells With a Robot-Tweezers Manipulation System. IEEE/ASME Transactions on Mechatronics, 2015, 20, 2242-2251.	3.7	28
120	Fusion with stem cell makes the hepatocellular carcinoma cells similar to liver tumor-initiating cells. BMC Cancer, 2016, 16, 56.	1.1	28
121	Mechanically stable ternary heterogeneous electrodes for energy storage and conversion. Nanoscale, 2018, 10, 2613-2622.	2.8	28
122	Global localization of multirobot formations using ceiling vision SLAM strategy. Mechatronics, 2009, 19, 617-628.	2.0	27
123	Advanced tools and methods for single-cell surgery. Microsystems and Nanoengineering, 2022, 8, 47.	3.4	27
124	Automated Transportation of Multiple Cell Types Using a Robot-Aided Cell Manipulation System With Holographic Optical Tweezers. IEEE/ASME Transactions on Mechatronics, 2017, 22, 804-814.	3.7	26
125	Orientation Control of a Differential Mobile Robot Through Wheel Synchronization. IEEE/ASME Transactions on Mechatronics, 2005, 10, 345-351.	3.7	25
126	Visual-based Impedance Force Control of Three-dimensional Cell Injection System. Proceedings - IEEE International Conference on Robotics and Automation, 2007, , .	0.0	25

#	Article	IF	Citations
127	Integrated design of trajectory planning and control for micro air vehicles. Mechatronics, 2007, 17, 245-253.	2.0	25
128	Mechanical Modeling of Red Blood Cells During Optical Stretching. Journal of Biomechanical Engineering, 2010, 132, 044504.	0.6	25
129	Design and characterization of a conductive nanostructured polypyrroleâ€polycaprolactone coated magnesium/ <scp>PLGA</scp> composite for tissue engineering scaffolds. Journal of Biomedical Materials Research - Part A, 2015, 103, 2966-2973.	2.1	25
130	Self-assembly of hierarchical 3D starfish-like Co3O4 nanowire bundles on nickel foam for high-performance supercapacitor. Journal of Nanoparticle Research, 2016, 18, 1.	0.8	25
131	Characterization of biomechanical properties of cells through dielectrophoresis-based cell stretching and actin cytoskeleton modeling. BioMedical Engineering OnLine, 2017, 16, 41.	1.3	25
132	Lgr5â€overexpressing mesenchymal stem cells augment fracture healing through regulation of Wnt/ERK signaling pathways and mitochondrial dynamics. FASEB Journal, 2019, 33, 8565-8577.	0.2	25
133	Nonlinear PD Synchronized Control for Parallel Manipulators. , 0, , .		24
134	Preserving Multirobot Connectivity in Rendezvous Tasks in the Presence of Obstacles With Bounded Control Input. IEEE Transactions on Control Systems Technology, 2013, 21, 2306-2314.	3.2	24
135	Dynamic Path Planning for Inserting a Steerable Needle Into a Soft Tissue. IEEE/ASME Transactions on Mechatronics, 2014, 19, 549-558.	3.7	24
136	Rapid characterization of the biomechanical properties of drug-treated cells in a microfluidic device. Journal of Micromechanics and Microengineering, 2015, 25, 105004.	1.5	24
137	Hybrid control of a rotational flexible beam using enhanced PD feedback with a nonlinear differentiator and PZT actuators. Smart Materials and Structures, 2005, 14, 69-78.	1.8	23
138	Development of an FPGA-Based Motion Control ASIC for Robotic Manipulators. , 2006, , .		23
139	Position and force tracking of a two-manipulator system manipulating a flexible beam. Journal of Field Robotics, 2001, 18, 197-212.	0.7	22
140	A simple hybrid fuzzy PD controller. Mechatronics, 2004, 14, 877-890.	2.0	22
141	Automated High-Productivity Microinjection System for Adherent Cells. IEEE Robotics and Automation Letters, 2020, 5, 1167-1174.	3.3	22
142	Acoustic valves in microfluidic channels for droplet manipulation. Lab on A Chip, 2021, 21, 3165-3173.	3.1	22
143	Manipulating Cell Adhesions with Optical Tweezers for Study of Cell-to-Cell Interactions. Journal of Biomedical Nanotechnology, 2013, 9, 281-285.	0.5	21
144	A dual caudal-fin miniature robotic fish with an integrated oscillation and jet propulsive mechanism. Bioinspiration and Biomimetics, 2018, 13, 036007.	1.5	21

#	Article	IF	Citations
145	Robust orientation control of multiâ€DOF cell based on uncertainty and disturbance estimation. International Journal of Robust and Nonlinear Control, 2019, 29, 4859-4871.	2.1	20
146	An Inverse-Kinematics Table-Based Solution of a Humanoid Robot Finger With Nonlinearly Coupled Joints. IEEE/ASME Transactions on Mechatronics, 2009, 14, 273-281.	3.7	19
147	Integrated Design and Control under Uncertainty: A Fuzzy Modeling Approach. Industrial & Design amp; Engineering Chemistry Research, 2010, 49, 1312-1324.	1.8	19
148	Electrotaxis of tumor-initiating cells of H1975 lung adenocarcinoma cells is associated with both activation of stretch-activated cation channels (SACCs) and internal calcium release. Bioelectrochemistry, 2018, 124, 80-92.	2.4	19
149	Translational and rotational manipulation of filamentous cells using optically driven microrobots. Optics Express, 2019, 27, 16475.	1.7	19
150	Performance Improvement of Industrial Robot Trajectory Tracking Using Adaptive-Learning Scheme. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 1999, 121, 285-292.	0.9	18
151	Automated Transportation of Single Cells Using Robot-Tweezer Manipulation System. Journal of the Association for Laboratory Automation, 2011, 16, 263-270.	2.8	18
152	Probing cell biophysical behavior based on actin cytoskeleton modeling and stretching manipulation with optical tweezers. Applied Physics Letters, 2013, 103, .	1.5	18
153	Characterization of a Honeycomb-Like Scaffold With Dielectrophoresis-Based Patterning for Tissue Engineering. IEEE Transactions on Biomedical Engineering, 2017, 64, 755-764.	2.5	18
154	Engineered bone scaffolds with Dielectrophoresis-based patterning using 3D printing. Biomedical Microdevices, 2017, 19, 102.	1.4	18
155	Adaptive synchronized control for coordination of two robot manipulators. , 0, , .		17
156	Controlling Swarms of Mobile Robots for Switching between Formations Using Synchronization Concept. Proceedings - IEEE International Conference on Robotics and Automation, 2007, , .	0.0	17
157	Integrated vision and force control in suspended cell injection system: Towards automatic batch biomanipulation., 2008,,.		17
158	A new piezo-driven ultrasonic cell microinjection system. , 2010, , .		17
159	Apply RRT-based path planning to robotic manipulation of biological cells with optical tweezer. , 2011, , .		17
160	Transportation of biological cells with robot-tweezer manipulation system. , 2011, , .		17
161	Development of an Optical Gas Leak Sensor for Detecting Ethylene, Dimethyl Ether and Methane. Sensors, 2013, 13, 4157-4169.	2.1	17
162	Design of a Novel Compliant Safe Robot Joint With Multiple Working States. IEEE/ASME Transactions on Mechatronics, 2016, 21, 1193-1198.	3.7	17

#	Article	IF	Citations
163	Microfluidic platform for probing cancer cells migration property under periodic mechanical confinement. Biomicrofluidics, 2018, 12, 024118.	1.2	17
164	3-D Image Reconstruction of Biological Organelles With a Robot-Aided Microscopy System for Intracellular Surgery. IEEE Robotics and Automation Letters, 2019, 4, 231-238.	3.3	17
165	A microengineered cell fusion approach with combined optical tweezers and microwell array technologies. RSC Advances, 2013, 3, 23589.	1.7	16
166	Precise Automated Intracellular Delivery Using a Robotic Cell Microscope System With Three-Dimensional Image Reconstruction Information. IEEE/ASME Transactions on Mechatronics, 2020, 25, 2870-2881.	3.7	16
167	Control of a Flexible Continuum Manipulator for Laser Beam Steering. IEEE Robotics and Automation Letters, 2021, 6, 1074-1081.	3.3	16
168	A Visual Impedance Force Control of A Robotic Cell Injection System. , 2006, , .		15
169	A force control based cell injection approach in a bio-robotics system. , 2009, , .		15
170	Global exponential stability and periodic solutions of high-order bidirectional associative memory (BAM) neural networks with time delays and impulses. Neurocomputing, 2015, 155, 261-276.	3.5	15
171	Simultaneous Localization and Mapping-Based In Vivo Navigation Control of Microparticles. IEEE Transactions on Industrial Informatics, 2020, 16, 2956-2964.	7.2	15
172	Force Sensing and Control in Robot-Assisted Suspended Cell Injection System. Intelligent Systems Reference Library, 2012, , 61-88.	1.0	15
173	A switching controller for high speed cell transportation by using a robot-aided optical tweezers system. Automatica, 2018, 89, 308-315.	3.0	14
174	Development of a Cell‣oading Microrobot with Simultaneously Improved Degradability and Mechanical Strength for Performing In Vivo Delivery Tasks. Advanced Intelligent Systems, 2021, 3, 2100052.	3.3	14
175	Modeling and experimental study for minimization of energy consumption of a mobile robot. , 2012, , .		13
176	Modelling and control of optical manipulation for cell rotation., 2015,,.		13
177	A Bioinspired Composite Finger With Self-Locking Joints. IEEE Robotics and Automation Letters, 2021, 6, 1391-1398.	3.3	13
178	Automated Optical Tweezers Manipulation to Transfer Mitochondria from Fetal to Adult MSCs to Improve Antiaging Gene Expressions. Small, 2021, 17, e2103086.	5.2	13
179	3D Navigation Control of Untethered Magnetic Microrobot in Centimeter-Scale Workspace Based on Field-of-View Tracking Scheme. IEEE Transactions on Robotics, 2022, 38, 1583-1598.	7.3	13
180	Modeling and cooperation of two-arm robotic system manipulating a deformable object. , 0, , .		12

#	Article	IF	Citations
181	3-D Automatic Microassembly by Vision-Based Control. , 2007, , .		12
182	Penetration force measurement and control in robotic cell microinjection., 2009,,.		12
183	The Design and Analysis of a Novel Micro Force Sensor Based on Depletion Type Movable Gate Field Effect Transistor. Journal of Microelectromechanical Systems, 2019, 28, 298-310.	1.7	12
184	A dynamic priority strategy in decentralized motion planning for formation forming of multiple mobile robots. , 2009, , .		11
185	Cell adhesion manipulation through single cell assembly for characterization of initial cell-to-cell interaction. BioMedical Engineering OnLine, 2015, 14, 114.	1.3	11
186	Monitoring the intracellular calcium response to a dynamic hypertonic environment. Scientific Reports, 2016, 6, 23591.	1.6	11
187	Design of a three-segment continuum robot for minimally invasive surgery. Robotics and Biomimetics, 2016, 3, 2.	1.7	11
188	Development of a collision-avoidance vector based control algorithm for automated in-vivo transportation of biological cells. Automatica, 2018, 90, 147-156.	3.0	11
189	Electromagnetic Actuation of Microrobots in a Simulated Vascular Structure With a Position Estimator Based Motion Controller. IEEE Robotics and Automation Letters, 2020, 5, 6255-6261.	3.3	11
190	Dynamic analysis of railway vehicle derailment mechanism in train-to-train collision accidents. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2021, 235, 1022-1034.	1.3	11
191	Accurate instance segmentation of surgical instruments in robotic surgery: model refinement and cross-dataset evaluation. International Journal of Computer Assisted Radiology and Surgery, 2021, 16, 1607-1614.	1.7	11
192	A FPGA-Based Motion Control IC Design. , 0, , .		10
193	A new motion control hardware architecture with FPGA-based IC design for robotic manipulators. , 0,		10
194	Modeling and development of a magnetically actuated system for micro-particle manipulation. , 2014, , .		10
195	Microfluidic single-cell array platform enabling week-scale clonal expansion under chemical/electrical stimuli. Biomicrofluidics, 2017, 11, .	1.2	10
196	A high-precision robot-aided single-cell biopsy system. , 2017, , .		10
197	Automated Indirect Transportation of Biological Cells with Optical Tweezers and a 3D Printed Microtool. Applied Sciences (Switzerland), 2019, 9, 2883.	1.3	10
198	Neck injury mechanisms in train collisions: Dynamic analysis and data mining of the driver impact injury. Accident Analysis and Prevention, 2020, 146, 105725.	3.0	10

#	Article	IF	Citations
199	Automated 3-D Deformation of a Soft Object Using a Continuum Robot. IEEE Transactions on Automation Science and Engineering, 2021, 18, 2076-2086.	3.4	10
200	Tracking stabilization of differential mobile robots using adaptive synchronized control., 0,,.		9
201	Uniform synchronization in multi-axis motion control. , 0, , .		9
202	Automatic suspended cell injection under vision and force control biomanipulation., 2007,,.		9
203	Force analysis and path planning of the trapped cell in robotic manipulation with optical tweezers. , 2010, , .		9
204	Coordinated charging control of plug-in electric vehicles at a distribution transformer level using the vTOU-DP approach. , 2012, , .		9
205	Distributed circumnavigation by unicycles with cyclic repelling strategies. , 2013, , .		9
206	Photocatalytic Property of Fe ₃ O ₄ /SiO ₂ /TiO ₂ Core-Shell Nanoparticle with Different Functional Layer Thicknesses. Journal of Nanomaterials, 2014, 2014, 1-7.	1.5	9
207	Increasing the physical size and nucleation status of human pluripotent stem cell-derived ventricular cardiomyocytes by cell fusion. Stem Cell Research, 2017, 19, 76-81.	0.3	9
208	Automated Transportation of Biological Cells for Multiple Processing Steps in Cell Surgery. IEEE Transactions on Automation Science and Engineering, 2017, 14, 1712-1721.	3.4	9
209	Modeling and Control of Single-Cell Migration Induced by a Chemoattractant-Loaded Microbead. IEEE Transactions on Cybernetics, 2019, 49, 427-439.	6.2	9
210	Antibody-coated microstructures for selective isolation of immune cells in blood. Lab on A Chip, 2020, 20, 1072-1082.	3.1	9
211	A Climbing Robot for Cleaning Glass Surface with Motion Planning and Visual Sensing. , 0, , .		8
212	Control of Single-Cell Migration Using a Robot-Aided Stimulus-Induced Manipulation System. IEEE/ASME Transactions on Mechatronics, 2017, 22, 815-825.	3.7	8
213	Robust Model-Predictive Deformation Control of a Soft Object by Using a Flexible Continuum Robot. , 2018, , .		8
214	A microelectrode array chip for osteogenic differentiation of mesenchymal stem cells under electrical stimulation. Lab on A Chip, 2020, 20, 373-383.	3.1	8
215	Application of smart material actuators for control of a single-link flexible manipulator. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 1999, 32, 575-580.	0.4	7
216	Position and force tracking of a two-manipulator system manipulating a flexible beam payload. , 0, , .		7

#	Article	IF	CITATIONS
217	Development of partial model-based torque control of AC induction motors. IEEE Transactions on Automation Science and Engineering, 2001, 17, 100-107.	2.4	7
218	Torque and current control of high-speed motion control systems with sinusoidal-PMAC motors. IEEE/ASME Transactions on Mechatronics, 2002, 7, 369-377.	3.7	7
219	A Model Free Synchronization Approach to Controls of Parallel Manipulators. , 0, , .		7
220	Path planning in automated manipulation of biological cells with optical tweezers. , 2009, , .		7
221	A mechanical model of biological cells in microinjection. , 2009, , .		7
222	Optical Tweezer Technology. IEEE Nanotechnology Magazine, 2011, 5, 17-21.	0.9	7
223	Robot-assisted automatic cell sorting with combined optical tweezer and microfluidic chip technologies. , 2011, , .		7
224	Robotic cell manipulation with optical tweezers for biomechanical characterization. , 2011, , .		7
225	Multirobot rendezvous with bearing-only or range-only measurements. Robotics and Biomimetics, 2014, 1, .	1.7	7
226	An electromagnetic system for magnetic microbead's manipulation. , 2015, , .		7
227	Magnetic Force-driven in Situ Selective Intracellular Delivery. Scientific Reports, 2018, 8, 14205.	1.6	7
228	Gravitational sedimentation-based approach for ultra-simple and flexible cell patterning coculture on microfluidic device. Biofabrication, 2020, 12, 035005.	3.7	7
229	Preformation Characterization of a Torque-Driven Magnetic Microswimmer With Multi-Segment Structure. IEEE Access, 2021, 9, 29279-29292.	2.6	7
230	Robust Navigation Control of a Microrobot With Hysteresis Compensation. IEEE Transactions on Automation Science and Engineering, 2022, 19, 3083-3092.	3.4	7
231	Advanced torque control of robot manipulators driven by AC induction motors. , 0, , .		6
232	Adaptive synchronization control of a planar parallel manipulator., 2004,,.		6
233	Model identification of a small-scale air vehicle for loitering control design. , 2004, , .		6
234	A synchronous controller for multiple mobile robots in time-varied formations. , 2008, , .		6

#	Article	IF	Citations
235	Design and shape control of a three-section continuum robot. , 2016, , .		6
236	A novel MEMS force sensor based on Laterally Movable Gate Array Field Effect Transistor(LMGAFET)., 2017,,.		6
237	Advanced Biological Imaging for Intracellular Micromanipulation: Methods and Applications. Applied Sciences (Switzerland), 2020, 10, 7308.	1.3	6
238	A Virtual Assisted Controller for Biological Cell Transportation in a Dynamic Environment with Variable Field of View. IEEE/ASME Transactions on Mechatronics, 2020, , 1 -1.	3.7	6
239	Adaptive Coupling Control of Two Working Operations in CNC Integrated Machines*. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 2003, 125, 662-665.	0.9	6
240	Tracking control of differential mobile robots using adaptive coupling scheme., 0,,.		5
241	Global Stability of a Saturated Nonlinear PID Controller for Robotic Manipulators., 2006, , .		5
242	Performance Improvement of Tracking Control for a Planar Parallel Robot Using Synchronized Control. , 2006, , .		5
243	Control Mechanism Analysis of Small-Agent Networks Using a Distinguished Node Model for Urban Traffic Controls. IEEE Transactions on Automation Science and Engineering, 2008, 5, 420-430.	3.4	5
244	Mechanical modeling characterization of biological cells using microrobotics cell injection test bed. , 2009, , .		5
245	Coordinated motion planning of multiple mobile robots in formation. , 2010, , .		5
246	Path planning for 3D transportation of biological cells with optical tweezers., 2011,,.		5
247	Optimal path planning for inserting a steerable needle into tissue. , 2011, , .		5
248	Dielectrophoresis-based automatic 3D cell manipulation and patterning through a micro-electrode integrated multi-layer scaffold. , 2014, , .		5
249	Swarm-inspired transportation of biological cells using saturation-controlled optical tweezers. , 2015, , .		5
250	Characterization of Drug Effect on Leukemia Cells Through Single Cell Assay With Optical Tweezers and Dielectrophoresis. IEEE Transactions on Nanobioscience, 2016, 15, 820-827.	2.2	5
251	Cell out-of-plane rotation control using a cell surgery robotic system equipped with optical tweezers manipulators. , 2016, , .		5
252	Calcium Spike Patterns Reveal Linkage of Electrical Stimulus and MSC Osteogenic Differentiation. IEEE Transactions on Nanobioscience, 2019, 18, 3-9.	2.2	5

#	Article	IF	CITATIONS
253	Precise Drug Delivery by Using PLGA-Based Microspheres and Optical Manipulators. IEEE Transactions on Nanobioscience, 2020, 19, 192-202.	2.2	5
254	Knock-In of a Large Reporter Gene via the High-Throughput Microinjection of the CRISPR/Cas9 System. IEEE Transactions on Biomedical Engineering, 2022, 69, 2524-2532.	2.5	5
255	Position and Force Control of Two CRS A460 Robots Manipulating a Flexible Sheet: Theory and Experiment. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 1998, 120, 529-533.	0.9	4
256	A MODEL-FREE CROSS-COUPLED CONTROL FOR POSITION SYNCHRONIZATION OF MULTI-AXIS MOTIONS: THEORY AND EXPERIMENTS. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2005, 38, 1-6.	0.4	4
257	Development of Micro Air Vehicle Based on Aerodynamic Modeling Analysis in Tunnel Tests. , 0, , .		4
258	A Visual Based Extended Monte Carlo Localization for Autonomous Mobile Robots. , 2006, , .		4
259	Flocking of micro-scale particles with robotics and optical tweezers technologies. , 2010, , .		4
260	Cell sorting with combined optical tweezers and microfluidic chip technologies. , 2010, , .		4
261	An online coalition based approach to solving resource constrained multirobot task allocation problem. , 2010, , .		4
262	Force and motion analysis for automated cell transportation with optical tweezers. , 2011, , .		4
263	A novel allocation-based formation algorithm for swarm of micro-scaled particles. , 2011, , .		4
264	Automatic flocking manipulation of micro particles with robot-tweezers technologies. , 2012, , .		4
265	Automated manipulation of magnetic micro beads with electromagnetic coil system., 2013,,.		4
266	Development of a high throughput robot-aided cell injection system for human cells. , 2014, , .		4
267	Modeling and closed-loop control of electromagnetic manipulation of a microparticle. , 2015, , .		4
268	Development of biocompatible magnetic microrobot transporter using 3D laser lithography. , 2016, , .		4
269	Focused issue on micro-/nano-robotics. International Journal of Intelligent Robotics and Applications, 2018, 2, 381-382.	1.6	4
270	A Fish-Like Magnetically Propelled Microswimmer Fabricated by 3D Laser Lithography. , 2018, , .		4

#	Article	IF	Citations
271	Effects of Gene Delivery Approaches on Differentiation Potential and Gene Function of Mesenchymal Stem Cells. IEEE Transactions on Biomedical Engineering, 2022, 69, 83-95.	2.5	4
272	High-throughput deterministic pairing and coculturing of single cells in a microwell array using combined hydrodynamic and recirculation flow captures. Biomicrofluidics, 2021, 15, 054103.	1.2	4
273	Development of Cell-Carrying Magnetic Microrobots with Bioactive Nanostructured Titanate Surface for Enhanced Cell Adhesion. Micromachines, 2021, 12, 1572.	1.4	4
274	Image-Guided Corridor-Based Motion Planning and Magnetic Control of Microrotor in Dynamic Environments. IEEE/ASME Transactions on Mechatronics, 2022, 27, 5415-5426.	3.7	4
275	A Fuzzy Dynamic Uncertainty Compensator for Industrial Robots. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2001, 34, 209-214.	0.4	3
276	Brief communication: Uniform ultimate boundedness of a fuzzy logic controlled industrial robot. Journal of Field Robotics, 2001, 18, 553-561.	0.7	3
277	Integrated design of a linear positioning system with applications to electronic manufacturing. , 2004, , .		3
278	Development of a nonlinear PID controller with saturated function design., 0,,.		3
279	Investigation of the onset voltage for the design of a microfabricated colloid thruster. IEEE/ASME Transactions on Mechatronics, 2006, 11 , 66-74.	3.7	3
280	An FPGA Based Motion Control IC and Its Application to Robotic Manipulators. , 2006, , .		3
281	A decentralized local constraint path planner for multiple mobile robots. , 2009, , .		3
282	Resource constrained multirobot task allocation with a leader-follower coalition method., 2010,,.		3
283	Predictive control for Plug-in Microturbine powered Hybrid Electric Vehicles using telemetry information., 2011,,.		3
284	Automated in-vivo transportation of biological cells with a disturbance compensation controller. , 2016, , .		3
285	Design of an automated controller with collision-avoidance capability for in-vivo transportation of biological cells., 2017,,.		3
286	Microfluidic implementation of functional cytometric microbeads for improved multiplexed cytokine quantification. Biomicrofluidics, 2018, 12, 044112.	1.2	3
287	Inchworm-inspired soft climbing robot using microspine arrays. , 2019, , .		3
288	Combined Single-Cell Manipulation and Chemomechanical Modeling to Probe Cell Migration Mechanism During Cell-to-Cell Interaction. IEEE Transactions on Biomedical Engineering, 2020, 67, 1474-1482.	2.5	3

#	Article	IF	Citations
289	Automated 3-D Electromagnetic Manipulation of Microrobot With a Path Planner and a Cascaded Controller. IEEE Transactions on Control Systems Technology, 2022, 30, 2672-2680.	3.2	3
290	Coordination of two robots manipulating a flat object with sliding constraints. , 0, , .		2
291	Control of sinusoidal PMAC motors in high-speed motions. , 0, , .		2
292	A fuzzy compensator for uncertainty of industrial robots. , 0, , .		2
293	A synchronization approach to the mutual error control of a mobile manipulator. , 0, , .		2
294	Micro air vehicle: architecture and implementation. , 0, , .		2
295	A New Flux Observer Design for Backstepping Controls of Induction Motors. Electric Power Components and Systems, 2005, 33, 113-126.	1.0	2
296	Multi-Sensory Fusion for Mobile Robot Self-Localization. , 2006, , .		2
297	A synchronization control strategy for multiple robot systems using shape regulation technology. , 2008, , .		2
298	Distributed neural network-based policy gradient reinforcement learning for multi-robot formations. , 2008, , .		2
299	Orientation correction based monocular SLAM for a mobile robot. , 2008, , .		2
300	A RECEDING-HORIZON FORMATION TRACKING CONTROLLER WITH LEADER-FOLLOWER STRATEGIES. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2008, 41, 4400-4405.	0.4	2
301	Force characterization of live cells in automated transportation with robot-tweezers manipulation system. , 2010, , .		2
302	Connectivity constrained multirobot navigation with considering physical size of robots., 2011,,.		2
303	Pairing and moving swarm of micro particles into array with a robot-tweezer manipulation system. , $2011,$,.		2
304	Automated parallel cell isolation and deposition using microwell array and optical tweezers., 2012,,.		2
305	Mechanics-based modeling of needle insertion into soft tissue. , 2013, , .		2
306	Rendezvous of wheeled mobile robots using bearings-only or range-only measurements. , 2013, , .		2

#	Article	IF	Citations
307	Leader–follower-based dynamic trajectory planning for multirobot formation. Robotica, 2013, 31, 1351-1359.	1.3	2
308	Dynamics calibration of optically trapped cells with adaptive control technology. , 2013, , .		2
309	A study on cell motility mechanism using a cell manipulation system with optical tweezers. , 2013, , .		2
310	Automated laser-induced cell fusion based on microwell array. , 2013, , .		2
311	Optical manipulation of pairing biological cells using an artificial potential field based controller., 2014, , .		2
312	Topology design for router networks to accomplish a cooperative exploring task. , 2014, , .		2
313	3D cell manipulation with honeycomb-patterned scaffold for regeneration of bone-like tissues. , 2015, , .		2
314	Robot-aided biological cell transport and obstacle removal for multiple operation steps. , 2016, , .		2
315	High-Throughput Single Cell Trapping and Patterning Using a Sandwiched Microfluidic Chip. , 2018, , .		2
316	A Robotic Surgery Approach to Mitochondrial Transfer Amongst Single Cells. , 2019, , .		2
317	Automated Optical Tweezers Manipulation to Transfer Mitochondria from Fetal to Adult MSCs to Improve Antiaging Gene Expressions (Small 38/2021). Small, 2021, 17, 2170199.	5.2	2
318	Modeling and impedance control of a two-manipulator system handling a flexible beam. , 0, , .		1
319	AC induction motor control using an advanced flux observer design. , 2000, , .		1
320	Torque control of sinusoidal PMAC motors for direct-drive robots., 0, , .		1
321	A discrete approach to inner current loop control design of PMAC motor control systems. , 2001, , .		1
322	Nonlinear trajectory tracking control of a closed-chain manipulator. , 0, , .		1
323	Robust component synthesis vibration suppression for maneuver of flexible spacecrafts., 2004,,.		1
324	A vision-based position control methodology to drive mobile robots towards target positions. , 2005, , .		1

#	Article	IF	CITATIONS
325	Development of a small air vehicle based on aerodynamic model analysis in the tunnel tests. Mechatronics, 2006, 16, 41-49.	2.0	1
326	Collision-free Path Planning and Trajectory Generation for MAVs Flying in Urban Terrain. , 2006, , .		1
327	Global localization of multirobot formations using ceiling vision SLAM strategy. , 2007, , .		1
328	Mechanical characterization of human red blood cells by robotic manipulation with optical tweezers. , 2009, , .		1
329	Networked architecture for multi-robot task reallocation in dynamic environment. , 2009, , .		1
330	Localization strategies for indoor multi-robot formations. , 2009, , .		1
331	A neural network approach to monitoring robot malfunction in multirobot formation control tasks. , 2009, , .		1
332	Multirobot consensus while preserving connectivity in presence of obstacles with bounded control inputs. , 2010 , , .		1
333	An experimental study on leader-follower coalition method for solving multirobot task allocation problems. , 2010, , .		1
334	Motion planning of multirobot formation. , 2010, , .		1
335	Motion planning of multiple mobile robots with formation requirement. , 2010, , .		1
336	Dynamics analysis and closed-loop control of biological cells in transportation using robotic manipulation system with optical tweezers. , 2010, , .		1
337	Multilevel based topology design and formation control of robot swarms. , 2011, , .		1
338	Dynamic path planning in robot-aided optical manipulation of biological cells. , 2012, , .		1
339	Dynamic control of cell migration using optical tweezers and microfluidic channel. , 2012, , .		1
340	Dynamic path planning for inserting a steerable needle into soft tissue. , 2012, , .		1
341	Distributed multirobot shape control with a multilevel-based topology and market-based auction algorithm. , 2012, , .		1
342	Dynamics analysis and automated control of cell chemotaxis movement using a robot-aided optical manipulation tool. , 2013 , , .		1

#	Article	IF	Citations
343	Cell patterning with robotically controlled optical tweezers. , 2013, , .		1
344	Apply Robot-Tweezers Manipulation to Cell Stretching for Biomechanical Characterization. , 2013, , 223-239.		1
345	Special Issue on "Visionâ€Based Control Systems― Asian Journal of Control, 2014, 16, 629-631.	1.9	1
346	Preparation and Experimental Study on Dielectrophoresis-Based Microfluidic Chip for Cell Patterning. Chinese Journal of Analytical Chemistry, 2014, 42, 1568-1573.	0.9	1
347	Automated assembly of biological cells in a 3D scaffold via dielectrophoresis manipulation. , 2014, , .		1
348	Control of single cell migration induced by robotically controlled microsource. , 2015, , .		1
349	Fabrication and characterization of magnetic porous microrobots., 2015,,.		1
350	Active disturbance rejection control of single cell migration induced by chemoattractant-loaded microbead. , $2016, , .$		1
351	Observer-based output feedback control for a class of nonlinear descriptor systems. , 2017, , .		1
352	Nanomanipulation in Biomedical Applications. Current Robotics Reports, 2021, 2, 133-145.	5.1	1
353	Cell Manipulation with Robot-Aided Optical Tweezers Technology. , 2013, , 159-174.		1
354	Generalized H/sub $2/$ controller synthesis of fuzzy dynamic systems based on piecewise Lyapunov functions. , 0 , , .		0
355	Robust component synthesis vibration suppression command for flexible spacecrafts with on-off actuators. , 0, , .		O
356	Adaptive cou ling control for position synchronizati n of two otion axes: theory and application. , 0, ,		0
357	A synchronisation approach to mutual error compensation in controlling the vehicle with an installed manipulator. International Journal of Vehicle Design, 2006, 42, 287.	0.1	O
358	Robotic manipulation of human red blood cells with optical tweezers for cell property characterization. , 2010, , .		0
359	Characterizing the micromechanical properties of myeloblasts from cancer patients with optical tweezers. , $2010, , .$		0
360	Investigation of TiO <inf>-SiO<inf>2</inf>-Fe<inf>3</inf>O<inf>4</inf> core-shell nanoparticle properties with different functional layer thickness., 2013,,.</inf>		0

#	Article	IF	CITATIONS
361	The corresponding relationship research between human lower limb operation mode and muscle information. , $2013, , .$		0
362	Configuration of mobile routers to support reliable communications., 2013,,.		0
363	Kinodynamic planning and tracking control of biological cell formation with optical tweezers. , 2013, , .		0
364	Coalition transportation of cells with optical tweezers. , 2013, , .		0
365	Probing mechanical behaviors of chronic myeloid leukemia cells in doxorubicin resistance by robotic manipulation with optical tweezers. , $2013, \ldots$		0
366	Design of a combined DEP-Raman system for cell stretching manipulation. , 2013, , .		0
367	Artificially induced cell fusion by optical tweezers manipulation. , 2013, , .		O
368	Robot-aided optical manipulation of cells with a unified controller. , 2014, , .		0
369	Quantitative analysis of chemoattractant gradient induced cell migration velocity and automatic controller design. , 2014, , .		0
370	Conductive, multilayer scaffold with micro-porous structure for tissue engineering. , 2014, , .		0
371	Circumnavigation by a mobile robot using bearing measurements. , 2014, , .		0
372	Optical manipulation of cell rotation using a robust controller. , 2015, , .		0
373	Dielectrophoresis-induced cell patterning using a new PLA scaffold made by 3D printing. , 2016, , .		0
374	A simple and efficient intracellular delivery method induced by a magnetic rod. , 2016, , .		0
375	A robust control scheme for 3D manipulation of a microparticle with electromagnetic coil system. , 2017, , .		0
376	Automated transportation of microparticles in vivo. , 2020, , 281-328.		0
377	Stable control framework for cell transportation using robot-aided optical tweezers., 2021,, 23-37.		O
378	Automated in-vivo transportation control of biological cells using robot-aided optical tweezers. , 2021, , 93-113.		0

#	Article	IF	CITATIONS
379	Laser-induced fusion of biological cells with cell positioning technique., 2021,, 137-146.		O
380	Automated transportation of multiple types of cells with holographic optical tweezers., 2021, , 61-74.		O
381	Cell biopsy using robot-aided optical manipulation of cell reorientation technique., 2021,, 147-167.		O
382	Automated pairing manipulation of biological cells with a robot-tweezers manipulation system. , 2021, , 39-59.		0
383	Robotic optical tweezers for cell biophysics. , 2021, , 227-239.		O
384	Modified Medial Collateral Ligament Indentation Technique in Total Knee Arthroplasty with Severe Type <scp>II</scp> Valgus Deformity. Orthopaedic Surgery, 2022, , .	0.7	0
385	Outlet detection and pose estimation for robot continuous operation., 2011,,.		O
386	Cell rotation. , 2022, , 213-241.		0
387	Cell patterning. , 2022, , 347-382.		0
388	Cell adhesion., 2022,, 383-403.		0
389	Cell stretching and compression. , 2022, , 107-162.		O
390	Three-dimensional image reconstruction and intracellular surgery. , 2022, , 243-274.		0
391	Cell manipulation tools., 2022,, 17-49.		O
392	Cell navigation and delivery inÂvivo. , 2022, , 433-465.		0
393	Robotic cell injection., 2022,, 51-105.		O
394	Cell stimulation and migration control. , 2022, , 311-345.		0
395	Cell sorting and separation. , 2022, , 275-310.		0
396	Cell fusion. , 2022, , 405-431.		0

#	Article	IF	CITATIONS
397	Cell transport with optical tweezers. , 2022, , 163-211.		0
398	Organelle biopsy and gene editing of single cells. , 2022, , 467-510.		0