Domenico Bosco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9069877/publications.pdf

Version: 2024-02-01

331642 345203 1,470 50 21 36 h-index citations g-index papers 53 53 53 951 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Leafhopper feeding behaviour on three grapevine cultivars with different susceptibilities to Flavescence dorée. Journal of Insect Physiology, 2022, 137, 104366.	2.0	11
2	Susceptibility to flavescence dorée of different Vitis vinifera genotypes from northâ€western Italy. Plant Pathology, 2021, 70, 511-520.	2.4	7
3	Silencing of ATP synthase \hat{l}^2 reduces phytoplasma multiplication in a leafhopper vector. Journal of Insect Physiology, 2021, 128, 104176.	2.0	7
4	Temporal dynamics of the transmission of Xylella fastidiosa subsp. pauca by Philaenus spumarius to olive plants. Entomologia Generalis, 2021, 41, 463-480.	3.1	14
5	Dispersal of <i>Philaenus spumarius </i> (Hemiptera: Aphrophoridae), a Vector of <i>Xylella fastidiosa </i> , in Olive Grove and Meadow Agroecosystems. Environmental Entomology, 2021, 50, 267-279.	1.4	21
6	Phenology, Seasonal Abundance, and Host-Plant Association of Spittlebugs (Hemiptera:) Tj ETQq0 0 0 rgBT /Ove	erlock 10 T	f 50,542 Td (<i>l</i>
7	Recovery from Grapevine Flavescence Dorée in Areas of High Infection Pressure. Agronomy, 2020, 10, 1479.	3.0	4
8	Biology and Prevalence in Northern Italy of Verrallia aucta (Diptera, Pipunculidae), a Parasitoid of Philaenus spumarius (Hemiptera, Aphrophoridae), the Main Vector of Xylella fastidiosa in Europe. Insects, 2020, 11, 607.	2.2	13
9	Prevalence of Flavescence Dor $ ilde{A}$ ©e Phytoplasma-Infected Scaphoideus titanus in Different Vineyard Agroecosystems of Northwestern Italy. Insects, 2020, 11, 301.	2.2	16
10	New Viral Sequences Identified in the Flavescence Dor \tilde{A} ©e Phytoplasma Vector Scaphoideus titanus. Viruses, 2020, 12, 287.	3.3	14
11	Spittlebugs of Mediterranean Olive Groves: Host-Plant Exploitation throughout the Year. Insects, 2020, 11, 130.	2.2	51
12	Pest categorisation of the nonâ€EU phytoplasmas of Cydonia Mill., Fragaria L., Malus Mill., Prunus L., Pyrus L., Ribes L., Rubus L. and Vitis L EFSA Journal, 2020, 18, e05929.	1.8	7
13	Biological characterization of Euscelidius variegatus iflavirus 1. Journal of Invertebrate Pathology, 2020, 173, 107370.	3.2	5
14	List of nonâ€EU phytoplasmas of tuberâ€forming Solanum spp EFSA Journal, 2020, 18, e06355.	1.8	1
15	Pest categorisation of the nonâ€EU phytoplasmas of tuberâ€forming Solanum spp EFSA Journal, 2020, 18, e06356.	1.8	1
16	Transmission of Xylella fastidiosa Subspecies Pauca Sequence Type 53 by Different Insect Species. Insects, 2019, 10, 324.	2,2	69
17	Artificial diet delivery system for <i>Philaenus spumarius</i> , the European vector of <i>Xylella fastidiosa</i> . Journal of Applied Entomology, 2019, 143, 882-892.	1.8	4
18	Collection of data and information on biology and control of vectors of Xylella fastidiosa. EFSA Supporting Publications, 2019, 16, 1628E.	0.7	18

#	Article	IF	CITATIONS
19	Genetic Diversity of Flavescence Dor \tilde{A} $\tilde{\mathbb{Q}}$ e Phytoplasmas at the Vineyard Scale. Applied and Environmental Microbiology, 2019, 85, .	3.1	23
20	Potential role of the alien planthopper Ricania speculum as vector of Flavescence dorée phytoplasma. European Journal of Plant Pathology, 2019, 154, 1103-1110.	1.7	6
21	Phenology, seasonal abundance and stage-structure of spittlebug (Hemiptera: Aphrophoridae) populations in olive groves in Italy. Scientific Reports, 2019, 9, 17725.	3.3	48
22	Plant Selection and Population Trend of Spittlebug Immatures (Hemiptera: Aphrophoridae) in Olive Groves of the Apulia Region of Italy. Journal of Economic Entomology, 2019, 112, 67-74.	1.8	42
23	Variable Membrane Protein A of Flavescence Dorée Phytoplasma Binds the Midgut Perimicrovillar Membrane of Euscelidius variegatus and Promotes Adhesion to Its Epithelial Cells. Applied and Environmental Microbiology, 2018, 84, .	3.1	31
24	Two Phytoplasmas Elicit Different Responses in the Insect Vector Euscelidius variegatus Kirschbaum. Infection and Immunity, 2018, 86, .	2.2	27
25	Updated pest categorisation of XylellaÂfastidiosa. EFSA Journal, 2018, 16, e05357.	1.8	45
26	Acibenzolarâ€ <i>S</i> à€methyl may prevent vectorâ€mediated flavescence dorée phytoplasma transmission, but is ineffective in inducing recovery of infected grapevines. Pest Management Science, 2017, 73, 534-540.	3.4	10
27	Spittlebugs as vectors of Xylella fastidiosa in olive orchards in Italy. Journal of Pest Science, 2017, 90, 521-530.	3.7	131
28	Acquisition of Flavescence Dor \tilde{A} ©e Phytoplasma by Scaphoideus titanus Ball from Different Grapevine Varieties. International Journal of Molecular Sciences, 2016, 17, 1563.	4.1	18
29	Risk to plant health of Flavescence dorée for the EU territory. EFSA Journal, 2016, 14, e04603.	1.8	29
30	Space-Time Point Pattern Analysis of Flavescence Dorée Epidemic in a Grapevine Field: Disease Progression and Recovery. Frontiers in Plant Science, 2016, 7, 1987.	3.6	34
31	Role of the major antigenic membrane protein in phytoplasma transmission by two insect vector species. BMC Microbiology, 2015, 15, 193.	3.3	41
32	Infectivity and Transmission of <i>Xylella fastidiosa</i> by <i>Philaenus spumarius</i> (Hemiptera: Aphrophoridae) in Apulia, Italy. Journal of Economic Entomology, 2014, 107, 1316-1319.	1.8	152
33	Acquisition capability of the grapevine Flavescence dor \tilde{A} ©e by the leafhopper vector Scaphoideus titanus Ball correlates with phytoplasma titre in the source plant. Journal of Pest Science, 2014, 87, 671-679.	3.7	42
34	Selection of reference genes from two leafhopper species challenged by phytoplasma infection, for gene expression studies by RT-qPCR. BMC Research Notes, 2013, 6, 409.	1.4	11
35	Molecular Identification of Phytoplasma Vector Species. Methods in Molecular Biology, 2013, 938, 87-108.	0.9	6
36	A Stage-Structured Model of <i>Scaphoideus titanus </i> ii Vineyards. Environmental Entomology, 2013, 42, 181-193.	1.4	11

#	Article	IF	CITATIONS
37	"Flavescence dorée―vector control in Italy. Phytopathogenic Mollicutes, 2013, 3, 40.	0.1	10
38	The Major Antigenic Membrane Protein of "Candidatus Phytoplasma asteris―Selectively Interacts with ATP Synthase and Actin of Leafhopper Vectors. PLoS ONE, 2011, 6, e22571.	2.5	88
39	Molecular identification of the <i>Hyalesthes</i> species (Hemiptera: Cixiidae) occurring in vineyard agroecosystems. Annals of Applied Biology, 2010, 157, 435-445.	2.5	14
40	Variation in vector competency depends on chrysanthemum yellows phytoplasma distribution within <i>Euscelidius variegatus</i> . Entomologia Experimentalis Et Applicata, 2009, 131, 200-207.	1.4	30
41	Characterization of putative membrane protein genes of the â€~ <i>Candidatus</i> Phytoplasma asteris', chrysanthemum yellows isolate. Canadian Journal of Microbiology, 2008, 54, 341-351.	1.7	19
42	PCR-RFLP identification of Bemisia tabaci biotypes in the Mediterranean Basin. Phytoparasitica, 2006, 34, 243-251.	1,2	58
43	Relative Quantification of Chrysanthemum Yellows (16Sr I) Phytoplasma in Its Plant and Insect Host Using Real-Time Polymerase Chain Reaction. Molecular Biotechnology, 2005, 30, 117-128.	2.4	69
44	Characterization of biotype T ofBemisia tabaci associated withEuphorbia characias in Sicily. Phytoparasitica, 2005, 33, 196-208.	1,2	15
45	Note: A comparison of molecular diagnostic procedures for the detection of aster yellows phytoplasmas (16Sr-I) in leafhopper vectors. Phytoparasitica, 2004, 32, 141-145.	1.2	6
46	Epidemiology of apple proliferation (AP) in northwestern Italy: evaluation of the frequency of AP-positive psyllids in naturally infected populations of Cacopsylla melanoneura (Homoptera:) Tj ETQq0 0 0 rgB ⁻	「/O≥v.esrlocl	k 1 0 8f 50 377
47	Population Dynamics of <l>Cacopsylla melanoneura</l> (Homoptera: Psyllidae), a Vector of Apple Proliferation Phytoplasma in Northwestern Italy. Journal of Economic Entomology, 2002, 95, 544-551.	1.8	60
48	DNA-Based Methods for the Detection and the Identification of Phytoplasmas in Insect Vector Extracts. Molecular Biotechnology, 2002, 22, 009-018.	2.4	21
49	Vector-pathogen-host plant relationships of chrysanthemum yellows (CY) phytoplasma and the vector leafhoppers Macrosteles quadripunctulatus and Euscelidius variegatus. Entomologia Experimentalis Et Applicata, 2001, 99, 347-354.	1.4	31
50	Differential acquisition of chrysanthemum yellows phytoplasma by three leafhopper species. Entomologia Experimentalis Et Applicata, 1997, 83, 219-224.	1.4	36