Josefa Bastida

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9069705/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sustainable synthesis of branched-chain diesters. Journal of Biotechnology, 2021, 325, 91-99.	3.8	10
2	A simplified kinetic model to describe the solventâ€free enzymatic synthesis of wax esters. Journal of Chemical Technology and Biotechnology, 2021, 96, 2325-2335.	3.2	3
3	Sustainable Biocatalytic Procedure for Obtaining New Branched Acid Esters. Materials, 2021, 14, 6847.	2.9	4
4	Optimization of a sustainable biocatalytic process for the synthesis of ethylhexyl fatty acids esters. Catalysis Today, 2020, 346, 98-105.	4.4	11
5	Reaction strategies for the enzymatic synthesis of neopentyl glycol diheptanoate. Enzyme and Microbial Technology, 2020, 132, 109400.	3.2	12
6	Development and economic evaluation of an eco-friendly biocatalytic synthesis of emollient esters. Bioprocess and Biosystems Engineering, 2020, 43, 495-505.	3.4	14
7	Preliminary economic assessment: a valuable tool to establish biocatalytic process feasibility with an in″ab immobilized lipase. Journal of Chemical Technology and Biotechnology, 2019, 94, 409-417.	3.2	8
8	Biocatalytic solutions to cyclomethicones problem in cosmetics. Engineering in Life Sciences, 2019, 19, 370-388.	3.6	16
9	Biocatalytic Synthesis of Polymeric Esters Used as Emulsifiers. Chemical and Biochemical Engineering Quarterly, 2019, 33, 79-86.	0.9	3
10	One‣tep Solventâ€Free Production of a Spermaceti Analogue Using Commercial Immobilized Lipases. ChemistrySelect, 2018, 3, 748-752.	1.5	10
11	Optimization of the Stabilization System for Electromagnetic Suspension in Active Vibration Isolation Devices. MATEC Web of Conferences, 2016, 79, 01019.	0.2	5
12	Optimizing the production of the biosurfactant lichenysin and its application in biofilm control. Journal of Applied Microbiology, 2016, 120, 99-111.	3.1	72
13	Solvent-free enzymatic production of high quality cetyl esters. Bioprocess and Biosystems Engineering, 2016, 39, 641-649.	3.4	23
14	Synthesis of cetyl ricinoleate catalyzed by immobilized Lipozyme® CalB lipase in a solvent-free system. Catalysis Today, 2015, 255, 49-53.	4.4	16
15	Application of a diffusion-reaction kinetic model for the removal of 4-chlorophenol in continuous tank reactors. Environmental Technology (United Kingdom), 2014, 35, 1866-1873.	2.2	2
16	Study of different reaction schemes for the enzymatic synthesis of polyglycerol polyricinoleate. Journal of the Science of Food and Agriculture, 2014, 94, 2308-2316.	3.5	5
17	Optimized enzymatic synthesis of the food additive polyglycerol polyricinoleate (PGPR) using Novozym® 435 in a solvent free system. Biochemical Engineering Journal, 2014, 84, 91-97.	3.6	24
18	Esterification of polyglycerol with polycondensed ricinoleic acid catalysed by immobilised Rhizopus oryzae lipase. Bioprocess and Biosystems Engineering, 2013, 36, 1291-1302.	3.4	7

Josefa Bastida

#	Article	IF	CITATIONS
19	Utilization of Agro-industrial Residues for Poly(3-hydroxyalkanoate) Production by Pseudomonas aeruginosa 42A2 (NCIMB 40045): Optimization of Culture Medium. JAOCS, Journal of the American Oil Chemists' Society, 2012, 89, 111-122.	1.9	6
20	Solvent-free polyglycerol polyricinoleate synthesis mediated by lipase from Rhizopus arrhizus. Biochemical Engineering Journal, 2011, 54, 111-116.	3.6	24
21	Influence of the operating conditions on lipase-catalysed synthesis of ricinoleic acid estolides in solvent-free systems. Biochemical Engineering Journal, 2009, 44, 214-219.	3.6	31
22	Screening and selection of lipases for the enzymatic production of polyglycerol polyricinoleate. Biochemical Engineering Journal, 2009, 46, 217-222.	3.6	24
23	Determination of optimal conditions for the removal of 4-chlorophenol using several peroxidases in a stirred batch reactor. New Biotechnology, 2009, 25, S122-S123.	4.4	0
24	Adsorption–desorption processes of Candida rugosa lipase in an ionic exchange resin. New Biotechnology, 2009, 25, S127-S128.	4.4	0
25	A comparative study of free and immobilized soybean and horseradish peroxidases for 4-chlorophenol removal: protective effects of immobilization. Bioprocess and Biosystems Engineering, 2008, 31, 587-593.	3.4	53
26	A short recursive procedure for evaluating effectiveness factors for immobilized enzymes with reversible Michaelis–Menten kinetics. Biochemical Engineering Journal, 2008, 39, 58-65.	3.6	7
27	A covered particle deactivation model and an expanded Dunford mechanism for the kinetic analysis of the immobilized SBP/phenol/hydrogen peroxide system. Chemical Engineering Journal, 2008, 138, 460-473.	12.7	15
28	Experimental behaviour and design model of a continuous tank reactor for removing 4-chlorophenol with soybean peroxidase. Chemical Engineering and Processing: Process Intensification, 2008, 47, 1786-1792.	3.6	14
29	Production of ricinoleic acid estolide with free and immobilized lipase from Candida rugosa. Biochemical Engineering Journal, 2008, 39, 450-456.	3.6	41
30	Comparison of commercial peroxidases for removing phenol from water solutions. Chemosphere, 2006, 63, 626-632.	8.2	76
31	Immobilization of peroxidases on glass beads: An improved alternative for phenol removal. Enzyme and Microbial Technology, 2006, 39, 1016-1022.	3.2	149
32	Enzymatic biosynthesis of ricinoleic acid estolides. Biochemical Engineering Journal, 2005, 26, 155-158.	3.6	47
33	Two-parameter model for evaluating effectiveness factor for immobilized enzymes with reversible Michaelis–Menten kinetics. Chemical Engineering Science, 2003, 58, 4287-4290.	3.8	8
34	Utilization of response surface methodology to optimize the culture media for the production of rhamnolipids byPseudomonas aeruginosa AT10. Journal of Chemical Technology and Biotechnology, 2002, 77, 777-784.	3.2	57
35	Ultrafiltration membrane reactors for enzymatic resolution of amino acids: design model and optimization. Enzyme and Microbial Technology, 2001, 28, 355-361.	3.2	20
96	Title is missingly Riotechnology Letters 2001 22 887 801		

Josefa Bastida

#	Article	IF	CITATIONS
37	Kinetic calculations in the enzymatic resolution of dl-amino acids. Enzyme and Microbial Technology, 1999, 24, 381-387.	3.2	9
38	Biotransformation of oleic acid into 10-hydroxy-8E-octadecenoic acid by Pseudomonas sp. 42A2. Biotechnology Letters, 1999, 21, 1031-1035.	2.2	16
39	Production of optically pureL-valine in fluidized and packed bed reactors with immobilizedL-aminoacylase. , 1999, 74, 403-408.		10
40	Stabilization studies of l-aminoacylase-producing Pseudomonas sp. BA2 immobilized in calcium alginate gel. Enzyme and Microbial Technology, 1997, 21, 64-69.	3.2	20
41	Production ofL-aminoacylase by fermentation ofPseudomonas sp. BA2. Journal of Chemical Technology and Biotechnology, 1995, 64, 175-180.	3.2	6
42	Preliminary studies on the growth of Pseudomonas sp. BA2 and the production of L-aminoacylase. Biotechnology Letters, 1995, 17, 859-862.	2.2	5
43	Fluidized bed reactors operating with immobilized enzyme systems: Design model and its experimental verification. Enzyme and Microbial Technology, 1995, 17, 915-922.	3.2	29
44	Isolation and selection of an L-aminoacylase-producing bacterium, Pseudomonas sp. BA2. Letters in Applied Microbiology, 1994, 19, 461-465.	2.2	6
45	A comparison of different methods of β-galactosidase immobilization. Process Biochemistry, 1991, 26, 349-353.	3.7	48
46	Kinetic studies on surfactant production byPseudomonas aeruginosa 44T1. Journal of Industrial Microbiology, 1991, 8, 133-136.	0.9	45
47	Immobilization of ?-Galactosidase by physical adsorption on Chromosorb-W. Biotechnology Letters, 1991, 5, 393.	0.5	8
48	Evaluation of the effectiveness factor along immobilized enzyme fixed-bed reactors: Design of a reactor with naringinase covalently immobilized into glycophase-coated porous glass. Biotechnology and Bioengineering, 1987, 30, 491-497.	3.3	28
49	Analysis of diffusion effects on immobilized enzymes on porous supports with reversible Michaelis-Menten kinetics. Enzyme and Microbial Technology, 1986, 8, 433-438.	3.2	24
50	Immobilization of naringinase on glycophase-coated porous glass. Biotechnology Letters, 1985, 7, 477-482.	2.2	38
51	A method for assaying the rhamnosidase activity of naringinase. Analytical Biochemistry, 1985, 149, 566-571.	2.4	104