
Hongyuan Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9069601/publications.pdf Version: 2024-02-01

Ηονιζγιμαν Ζηλο

#	Article	IF	CITATIONS
1	Three-dimensional hierarchical porous carbon coupled with chitosan based electrochemical sensor for sensitive determination of niclosamide. Food Chemistry, 2022, 366, 130563.	4.2	48
2	Complexant-montmorillonite nanocomposites for heavy metal binding in sulfide tailing. Journal of Materials Research and Technology, 2022, 17, 329-341.	2.6	3
3	One-step ultrasonication-assisted synthesis of graphitized multi-walled carbon nanotubes@Super P Li nanocomposite for the determination of isoproturon. Journal of Porous Materials, 2022, 29, 629-640.	1.3	10
4	Rapid determination of methyl parathion in vegetables using electrochemical sensor fabricated from biomass-derived and β-cyclodextrin functionalized porous carbon spheres. Food Chemistry, 2022, 384, 132643.	4.2	42
5	A novel electrochemical sensor based on β-cyclodextrin functionalized carbon nanosheets@carbon nanotubes for sensitive detection of bactericide carbendazim in apple juice. Food Chemistry, 2022, 384, 132573.	4.2	46
6	Highly sensitive detection of carbendazim in juices based on mung bean-derived porous carbon@chitosan composite modified electrochemical sensor. Food Chemistry, 2022, 392, 133301.	4.2	29
7	Ultrasensitive determination of diquat using a novel nanohybrid sensor based on Super-P nanoparticles dispersed palygorskite nanofibers. Sensors and Actuators B: Chemical, 2022, 367, 132142.	4.0	14
8	Functionalised multi-walled carbon nanotubes-based electrochemical sensor: synergistic effect of graphitisation and carboxylation on detection performance of methyl parathion. Materials Research Innovations, 2022, 26, 324-330.	1.0	3
9	Electrochemical sensing platform based on graphitized and carboxylated multi-walled carbon nanotubes decorated with cerium oxide nanoparticles for sensitive detection of methyl parathion. Journal of Materials Research and Technology, 2022, 19, 3738-3748.	2.6	18
10	Highly sensitive determination of niclosamide based on chitosan functionalized carbon nanotube/carbon black scaffolds with interconnected long- and short-range conductive network. Journal of Materials Research and Technology, 2022, 19, 4525-4535.	2.6	6
11	Experimental study on CNC engraving parameters of Afghan white jade. Journal of Computational Methods in Sciences and Engineering, 2021, 20, 1221-1231.	0.1	0
12	Nanocomposite of halloysite nanotubes/multi-walled carbon nanotubes for methyl parathion electrochemical sensor application. Applied Clay Science, 2021, 200, 105907.	2.6	82
13	Facile synthesis of Vulcan XC-72 nanoparticles-decorated halloysite nanotubes for the highly sensitive electrochemical determination of niclosamide. Food Chemistry, 2021, 343, 128484.	4.2	51
14	Ultrasonic-assisted preparation of halloysite nanotubes/zirconia/carbon black nanocomposite for the highly sensitive determination of methyl parathion. Materials Science and Engineering C, 2021, 123, 111982.	3.8	45
15	The fate of fuel-nitrogen during the thermo-oxidative degradation of nitrogen-rich wood waste. Journal of Analytical and Applied Pyrolysis, 2021, 155, 105026.	2.6	1
16	Excellent electrochemical performance of lithium manganese composite decorated with poly(ethylene glycol) and carbon nanotube. Journal of Porous Materials, 2021, 28, 1619-1626.	1.3	8
17	Simultaneous removal of Zn2+ and p-nitrophenol from wastewater using nanocomposites of montmorillonite with alkyl-ammonium and complexant. Environmental Research, 2021, 201, 111496.	3.7	16
18	Synthesis of α-LiFeO2/Graphene nanocomposite via layer by layer self-assembly strategy for lithium-ion batteries with excellent electrochemical performance. Journal of Materials Science and Technology, 2020, 55, 173-181.	5.6	12

Hongyuan Zhao

#	Article	IF	CITATIONS
19	Equation of state of LiNiO·5Mn1·5O4 at high pressure. Solid State Communications, 2020, 321, 114045.	0.9	2
20	Effect of Yb2O3 and Tm2O3 on the wear resistance of high-alumina ceramics. Wear, 2020, 452-453, 203281.	1.5	6
21	One-pot green hydrothermal synthesis of bio-derived nitrogen-doped carbon sheets embedded with zirconia nanoparticles for electrochemical sensing of methyl parathion. Ceramics International, 2020, 46, 19713-19722.	2.3	60
22	Spray-drying synthesis of LiMnO2@VXC-72R composite microspheres with excellent electrochemical performance. Ceramics International, 2020, 46, 21805-21809.	2.3	28
23	Highly sensitive detection of gallic acid based on 3D interconnected porous carbon nanotubes/carbon nanosheets modified glassy carbon electrode. Journal of Materials Research and Technology, 2020, 9, 9422-9433.	2.6	49
24	Preparation of Sol-Enhanced Ni–P–Al2O3 Nanocomposite Coating by Electrodeposition. Journal of Nanomaterials, 2020, 2020, 1-9.	1.5	3
25	Multifunctional Integration of Double-Shell Hybrid Nanostructure for Alleviating Surface Degradation of LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ Cathode for Advanced Lithium-Ion Batteries at High Cutoff Voltage. ACS Applied Materials & amp; Interfaces, 2020, 12, 9268-9276.	4.0	66
26	Studies on corrosion resistance of thick Ti/TiN multilayer coatings under solid NaCl–H2O–O2 at 450 oC. Ceramics International, 2020, 46, 19274-19284.	2.3	18
27	Enhancing surface stability of LiNi0.8Co0.1Mn0.1O2 cathode with hybrid core-shell nanostructure induced by high-valent titanium ions for Li-ion batteries at high cut-off voltage. Journal of Alloys and Compounds, 2020, 834, 155099.	2.8	41
28	Significantly enhanced electrochemical properties of LiMn2O4-based composite microspheres embedded with nano-carbon black particles. Journal of Materials Research and Technology, 2020, 9, 7027-7033.	2.6	34
29	Improved Electrochemical Properties of LiMn2O4-Based Cathode Material Co-Modified by Mg-Doping and Octahedral Morphology. Materials, 2019, 12, 2807.	1.3	17
30	Low-cost and eco-friendly synthesis of octahedral LiMn2O4 cathode material with excellent electrochemical performance. Ceramics International, 2019, 45, 17183-17191.	2.3	43
31	Synergistic effects of zinc-doping and nano-rod morphology on enhancing the electrochemical properties of spinel Li-Mn-O material. Ceramics International, 2019, 45, 17591-17597.	2.3	35
32	Enhancing the Electrochemical Performance of Ni-Rich Layered Oxide Cathodes by Combination of the Gradient Doping and Dual-Conductive Layers Coating. ACS Applied Energy Materials, 2019, 2, 3120-3130.	2.5	59
33	Anisotropic Properties of Polylactic acid–carbon Fiber Composites Prepared by Droplet spray Additive Manufacturing. Materials, 2019, 12, 669.	1.3	2
34	Excellent cycling performance of LiMn1.92Al0.04Si0.04O4 nanorods as cathode material for lithium-ion battery. International Journal of Electrochemical Science, 2019, , 10375-10386.	0.5	0
35	Dual functions of gradient phosphate polyanion doping on improving the electrochemical performance of Ni-rich LiNi0.6Co0.2Mn0.2O2 cathode at high cut-off voltage and high temperature. Electrochimica Acta, 2019, 299, 971-978.	2.6	76
36	Yttrium modified Ni-rich LiNi0.8Co0.1Mn0.1O2 with enhanced electrochemical performance as high energy density cathode material at 4.5â€V high voltage. Journal of Alloys and Compounds, 2019, 774, 82-92.	2.8	114

Ηονογμαν Ζηλο

#	Article	IF	CITATIONS
37	Wear Resistance Mechanism of Alumina Ceramics Containing Gd2O3. Materials, 2018, 11, 2054.	1.3	5
38	Enhanced Cycling Stability through Erbium Doping of LiMn2O4 Cathode Material Synthesized by Sol-Gel Technique. Materials, 2018, 11, 1558.	1.3	11
39	Enhanced electrochemical performance of dual-conductive layers coated Ni-rich LiNi0.6Co0.2Mn0.2O2 cathode for Li-ion batteries at high cut-off voltage. Electrochimica Acta, 2018, 289, 82-93.	2.6	83
40	Environment-friendly synthesis of high-voltage LiNi0.5Mn1.5O4 nanorods with excellent electrochemical properties. Ceramics International, 2018, 44, 20575-20580.	2.3	34
41	Enhanced high-voltage cycling stability and rate capability of magnesium and titanium co-doped lithium cobalt oxides for lithium-ion batteries. Applied Surface Science, 2018, 458, 111-118.	3.1	32
42	Enhanced Cycling Stability of LiCuxMn1.95â^'xSi0.05O4 Cathode Material Obtained by Solid-State Method. Materials, 2018, 11, 1302.	1.3	14
43	Magnesium and silicon co-doped LiNi0.5Mn1.5O4 cathode material with outstanding cycling stability for lithium-ion batteries. Vacuum, 2018, 156, 1-8.	1.6	36
44	A Simple, Quick and Eco-Friendly Strategy of Synthesis Nanosized α-LiFeO2 Cathode with Excellent Electrochemical Performance for Lithium-Ion Batteries. Materials, 2018, 11, 1176.	1.3	11
45	Sol-Gel Synthesis of Silicon-Doped Lithium Manganese Oxide with Enhanced Reversible Capacity and Cycling Stability. Materials, 2018, 11, 1455.	1.3	13
46	Oxygen defects-mediated Z-scheme charge separation in g-C3N4/ZnO photocatalysts for enhanced visible-light degradation of 4-chlorophenol and hydrogen evolution. Applied Catalysis B: Environmental, 2017, 206, 406-416.	10.8	333
47	Facile synthesis of orthorhombic LiMnO2 nanorods by in-situ carbothermal reduction: Promising cathode material for Li ion batteries. Ceramics International, 2017, 43, 10585-10589.	2.3	35
48	Cost-effective large-scale synthesis of oxygen-defective ZnO photocatalyst with superior activities under UV and visible light. Ceramics International, 2017, 43, 1870-1879.	2.3	35
49	Er-Doped LiNi0.5Mn1.5O4 Cathode Material with Enhanced Cycling Stability for Lithium-Ion Batteries. Materials, 2017, 10, 859.	1.3	19
50	LiSixMn2â^'xO4 (xâ‰ 0 .10) cathode materials with improved electrochemical properties prepared via a simple solid-state method for high-performance lithium-ion batteries. Ceramics International, 2016, 42, 13442-13448.	2.3	35
51	A simple and mass production preferred solid-state procedure to prepare the LiSixMgxMn2â~'2xO4 (0≤â‰ 0 .10) with enhanced cycling stability and rate capability. Journal of Alloys and Compounds, 2016, 671, 304-311.	2.8	41
52	Orthorhombic LiMnO2 nanorods as cathode materials for lithium-ion batteries: Synthesis and electrochemical properties. Ceramics International, 2016, 42, 9319-9322.	2.3	37
53	Enhanced elevated-temperature performance of LiAlxSi0.05Mg0.05Mn1.90-xO4 (0≤â‰ 9 .08) cathode materials for high-performance lithium-ion batteries. Electrochimica Acta, 2016, 199, 18-26.	2.6	36
54	Graphene modified Li2FeSiO4/C composite as a high performance cathode material for lithium-ion batteries. Journal of Solid State Electrochemistry, 2015, 19, 469-475.	1.2	31

Ηονογμαν Ζηλο

#	Article	IF	CITATIONS
55	Synthesis and Characterization of Spherical Li ₂ Fe _{0.5} V _{0.5} SiO ₄ /C Composite for High-Performance Cathode Material of Lithium-Ion Secondary Batteries. Journal of the Electrochemical Society, 2015, 162, A737-A742.	1.3	32
56	Synthesis and electrochemical characterizations of spinel LiMn1.94MO4 (MÂ=ÂMn0.06, Mg0.06, Si0.06,) Tj ETQq 2015, 282, 118-128.	0 0 0 rgBT 4.0	Overlock] 49
57	Improved electrochemical performance of spinel-type LiMn1.90Mg0.05Si0.05O4 cathode materials synthesized by a citric acid-assisted sol–gel method. Journal of Solid State Electrochemistry, 2015, 19, 1015-1026.	1.2	10
58	A simple, low-cost and eco-friendly approach to synthesize single-crystalline LiMn2O4 nanorods with high electrochemical performance for lithium-ion batteries. Electrochimica Acta, 2015, 166, 124-133.	2.6	76
59	Fabrication and characterization of carbon-coated Li2FeSiO4 nanoparticles reinforced by carbon nanotubes as high performance cathode materials for lithium-ion batteries. Electrochimica Acta, 2015, 168, 8-15.	2.6	32
60	Synthesis of Li2FeSiO4/C nanocomposite via a hydrothermal-assisted sol–gel process. Solid State Ionics, 2015, 276, 33-39.	1.3	36
61	A simple and facile one-step strategy to synthesize orthorhombic LiMnO2 nano-particles with excellent electrochemical performance. Ceramics International, 2015, 41, 15266-15271.	2.3	27
62	Effects of equimolar Mg (II) and Si (IV) co-doping on the electrochemical properties of spinel LiMn2â^2xMgxSixO4 prepared by citric acid assisted sol–gel method. Electrochimica Acta, 2015, 151, 263-269.	2.6	49
63	A simple and efficient electrochemical sensor for determination of gallic acid based on multi-walled carbon nanotubes with carboxyl functionalization. Materials Research Innovations, 0, , 1-8.	1.0	3