Tan Ji Siang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9069595/publications.pdf Version: 2024-02-01

TAN LI SIANC

#	Article	IF	CITATIONS
1	Hydrogen production from CH4 dry reforming over bimetallic Ni–Co/Al2O3 catalyst. Journal of the Energy Institute, 2018, 91, 683-694.	2.7	67
2	Combined steam and CO2 reforming of methane for syngas production over carbon-resistant boron-promoted Ni/SBA-15 catalysts. Microporous and Mesoporous Materials, 2018, 262, 122-132.	2.2	66
3	New insights on the effect of the H2/CO ratio for enhancement of CO methanation over metal-free fibrous silica ZSM-5: Thermodynamic and mechanistic studies. Energy Conversion and Management, 2019, 199, 112056.	4.4	52
4	Dry reforming of methane to hydrogen-rich syngas over robust fibrous KCC-1 stabilized nickel catalyst with high activity and coke resistance. International Journal of Hydrogen Energy, 2020, 45, 18549-18561.	3.8	51
5	Microwave-assisted dry reforming of methane for syngas production: a review. Environmental Chemistry Letters, 2020, 18, 1987-2019.	8.3	51
6	Dry reforming of CH over stabilized Ni-La@KCC-1 catalyst: Effects of La promoter and optimization studies using RSM. Journal of CO2 Utilization, 2020, 37, 230-239.	3.3	46
7	Catalytic systems for enhanced carbon dioxide reforming of methane: a review. Environmental Chemistry Letters, 2021, 19, 2157-2183.	8.3	44
8	Hydrogen Production From Biogas Reforming: An Overview of Steam Reforming, Dry Reforming, Dual Reforming, and Tri-Reforming of Methane. , 2018, , 111-166.		43
9	Fibrous spherical Niâ€M/ZSMâ€5 (M: Mg, Ca, Ta, Ga) catalysts for methane dry reforming: The interplay between surface acidityâ€basicity and coking resistance. International Journal of Energy Research, 2020, 44, 5696-5712.	2.2	42
10	Enhanced dry reforming of methane over mesostructured fibrous Ni/MFI zeolite: Influence of preparation methods. Journal of the Energy Institute, 2020, 93, 1535-1543.	2.7	40
11	Methane bi-reforming over boron-doped Ni/SBA-15 catalyst: Longevity evaluation. International Journal of Hydrogen Energy, 2019, 44, 20839-20850.	3.8	37
12	Boron-doped Ni/SBA-15 catalysts with enhanced coke resistance and catalytic performance for dry reforming of methane. Journal of the Energy Institute, 2020, 93, 31-42.	2.7	37
13	Thermodynamic equilibrium study of altering methane partial oxidation for Fischer–Tropsch synfuel production. Energy, 2020, 198, 117394.	4.5	32
14	Review on the catalytic tri-reforming of methane - Part I: Impact of operating conditions, catalyst deactivation and regeneration. Applied Catalysis A: General, 2021, 621, 118202.	2.2	32
15	Role of oxygen vacancies in dendritic fibrous M/KCC-1 (MÂ=ÂRu, Pd, Rh) catalysts for methane partial oxidation to H2-rich syngas production. Fuel, 2020, 278, 118360.	3.4	30
16	Hydrogen-rich Syngas Production from Ethanol Dry Reforming on La-doped Ni/Al2O3 Catalysts: Effect of Promoter Loading. Procedia Engineering, 2016, 148, 654-661.	1.2	29
17	Tailoring Rh content on dendritic fibrous silica alumina catalyst for enhanced CO2 capture in catalytic CO2 methanation. Journal of Environmental Chemical Engineering, 2021, 9, 104616.	3.3	25
18	Unique structure of fibrous ZSM-5 catalyst expedited prolonged hydrogen atom restoration for selective production of propylene from methanol. International Journal of Hydrogen Energy, 2021, 46, 24652-24665.	3.8	25

Tan Ji Siang

#	Article	IF	CITATIONS
19	Production of hydrogen and value-added carbon materials by catalytic methane decomposition: a review. Environmental Chemistry Letters, 2022, 20, 2339-2359.	8.3	23
20	Zeolite and clay based catalysts for CO2 reforming of methane to syngas: A review. International Journal of Hydrogen Energy, 2022, 47, 30759-30787.	3.8	19
21	CO2 reforming of methane over Ta-promoted Ni/ZSM-5 fibre-like catalyst: Insights on deactivation behavior and optimization using response surface methodology (RSM). Chemical Engineering Science, 2021, 231, 116320.	1.9	18
22	Ni–Pt/Al nano-sized catalyst supported on TNPs for hydrogen and valuable fuel production from the steam reforming of plastic waste dissolved in phenol. International Journal of Hydrogen Energy, 2020, 45, 22817-22832.	3.8	17
23	Effect of Ni-Ta ratio on the catalytic selectivity of fibrous Ni-Ta/ZSM-5 for dry reforming of methane. Chemical Engineering Science, 2020, 227, 115952.	1.9	17
24	Enhanced carbon resistance and regenerability in methane partial oxidation to syngas using oxygen vacancy-rich fibrous Pd, Ru and Rh/KCC-1 catalysts. Environmental Chemistry Letters, 2021, 19, 2733-2742.	8.3	17
25	Improvements in hydrogen production from methane dry reforming on filament-shaped mesoporous alumina-supported cobalt nanocatalyst. International Journal of Hydrogen Energy, 2021, 46, 24781-24790.	3.8	16
26	Advanced catalysts and effect of operating parameters in ethanol dry reforming for hydrogen generation. A review. Environmental Chemistry Letters, 2022, 20, 1695-1718.	8.3	15
27	Abundant Lewis acidic sites of peculiar fibrous silica zeolite X enhanced toluene conversion in side chain toluene methylation. Fuel, 2021, 305, 121432.	3.4	9
28	Recent Advances in Steam Reforming of Glycerol for Syngas Production. , 2020, , 399-425.		8
29	Thermodynamic sensitivity analysis of CO2 reforming of methane based on equilibrium predictions. IOP Conference Series: Materials Science and Engineering, 2020, 808, 012001.	0.3	7
30	Dendritic Mesoporous Ni/KCC-1 for Partial Oxidation of Methane to Syngas. IOP Conference Series: Materials Science and Engineering, 2020, 808, 012006.	0.3	5
31	Bifunctional metal-free KAUST Catalysis Center 1 (KCC-1) as highly active catalyst for syngas production via methane partial oxidation. Materials Today Chemistry, 2022, 23, 100684.	1.7	5
32	Syngas Production from CO ₂ Reforming and CO ₂ -steam Reforming of Methane over Ni/Ce-SBA-15 Catalyst. IOP Conference Series: Materials Science and Engineering, 2017, 206, 012017.	0.3	3
33	Catalytic performance of yttrium-doped co/mesoporous alumina catalysts for methane dry reforming. AIP Conference Proceedings, 2019, , .	0.3	3
34	Catalytic partial oxidation of methane to syngas over perovskite catalysts. E3S Web of Conferences, 2019, 90, 01006.	0.2	3
35	A review on state-of-the-art catalysts for methane partial oxidation to syngas production. Catalysis Reviews - Science and Engineering, 2024, 66, 343-399.	5.7	3
36	Conversion of Biogas to Syngas via Catalytic Carbon Dioxide Reforming Reactions: An Overview of Thermodynamic Aspects, Catalytic Design, and Reaction Kinetics. , 2020, , 427-456.		2

Tan Ji Siang

#	Article	IF	CITATIONS
37	Mechanistic insight into low temperature toluene production via benzene methylation over mesopore-rich fibrous silica HZSM-5 zeolite. Journal of Porous Materials, 2021, 28, 1765.	1.3	2
38	Effect of ZSM-5 Acidity in Enhancement of Methanol-to-Olefins Process. Journal of Energy and Safety Technology (JEST), 2019, 2, .	0.1	2
39	Effect of transition metals (Mo, Mn and Co) on mesoporous ZSM-5 catalyst activity in carbon dioxide reforming of methane. IOP Conference Series: Materials Science and Engineering, 2020, 808, 012005.	0.3	1
40	Recent Advances in Hydrogen Production through Bi-Reforming of Biogas. , 2019, , 71-91.		1
41	Role of Promoters in Hoisting the Catalytic Performance for Enhanced CO Methanation. Journal of Energy and Safety Technology (JEST), 2019, 2, .	0.1	1
42	A Contemporary Assessment on Composite Titania onto Graphitic Carbon Nitride-Based Catalyst as Photocatalyst. Journal of Energy and Safety Technology (JEST), 2019, 2, .	0.1	1
43	Recent progress in ethanol steam reforming for hydrogen generation. , 2020, , 57-80.		0