Sergey Pulinets

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9069591/publications.pdf

Version: 2024-02-01

		156536	116156
128	4,931	32	66
papers	citations	h-index	g-index
158	158	158	1394
130	130	130	1394
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Atmosphere-ionosphere coupling induced by volcanoes eruption and dust storms and role of GEC as the agent of geospheres interaction. Advances in Space Research, 2022, 69, 4319-4334.	1.2	8
2	Atmospheric and ionospheric coupling phenomena associated with large earthquakes. European Physical Journal: Special Topics, 2021, 230, 197-225.	1.2	24
3	Method for Cognitive Identification of Ionospheric Precursors of Earthquakes. Geomagnetism and Aeronomy, 2021, 61, 14-24.	0.2	11
4	From Hector Mine M7.1 to Ridgecrest M7.1 Earthquake. A Look from a 20-Year Perspective. Atmosphere, 2021, 12, 262.	1.0	12
5	Reduction of the VLF Signal Phase Noise Before Earthquakes. Atmosphere, 2021, 12, 444.	1.0	5
6	Ionosphere Sounding for Pre-seismic Anomalies Identification (INSPIRE): Results of the Project and Perspectives for the Short-Term Earthquake Forecast. Frontiers in Earth Science, 2021, 9, .	0.8	14
7	RECOGNITION AND INTERPRETATION OF THE SPATIAL IRREGULARITIES IONOSPHERE FOR FEBRUARY – MARCH 2010 OVER THE SEISMIC ZONES OF SOUTH AMERICA BY RADIOPHYSICAL METHODS. Radio Communication Technology, 2021, , 7-23.	0.0	1
8	ЎЦЕĐĐŠĐ•Đ'ĐŽĐ—ĐœĐŽĐ—ĐЎГЎ ĐĐĐ—Đ'Đ"Đ¢Đ"Đ" Đ'Đ«Đ¡ĐŽĐŠĐŽĐĐĐ•ĐГДЧĐЎГЎ Đ"ĐĐœĐα	:ЕÐ.̃Ð −	-Đ>Đ£Đ§Đ•ĐĐ~Đ
9	A Lithosphere–Atmosphere–Ionosphere Coupling Phenomenon Observed Before M 7.7 Jamaica Earthquake. Pure and Applied Geophysics, 2021, 178, 3869-3886.	0.8	17
10	Investigation of Pre-Earthquake Ionospheric and Atmospheric Disturbances for Three Large Earthquakes in Mexico. Geosciences (Switzerland), 2021, 11, 16.	1.0	14
11	Monitoring of Physical Processes in Upper Atmosphere, Ionosphere and Magnetosphere in Ionosphere Space Missions. EPJ Web of Conferences, 2021, 254, 02010.	0.1	o
12	Transient Effects in Atmosphere and Ionosphere Preceding the 2015 M7.8 and M7.3 Gorkha–Nepal Earthquakes. Frontiers in Earth Science, 2021, 9, .	0.8	26
13	The Global Electric Circuit and Global Seismicity. Geosciences (Switzerland), 2021, 11, 491.	1.0	11
14	Mock-Up of Information Service for Automated Monitoring and Short-Term Forecasting of Severe Earthquakes in the Kamchatka-Sakhalin Region. Rocket-Space Device Engineering and Information Systems, 2021, 8, 3-15.	0.1	0
15	Variation in natural short-period ionospheric noise, and acoustic and gravity waves revealed by the amplitude analysis of a VLF radio signal on the occasion of the Kraljevo earthquake (Mw = 5.4). Science of the Total Environment, 2020, 710, 136406.	3.9	12
16	Algorithm for modeling electromagnetic channel of seismo-ionospheric coupling (SIC) and the variations in the electron concentration. Acta Geophysica, 2020, 68, 253-278.	1.0	8
17	Responses to the preparation of strong Kamchatka earth-quakes in the lithosphere–atmosphere–ionosphere system, based on new data from integrated ground and iono-spheric monitoring. E3S Web of Conferences, 2020, 196, 03005.	0.2	7
18	Principles of organizing earthquake forecasting based on multiparameter sensor-WEB monitoring data. E3S Web of Conferences, 2020, 196, 03004.	0.2	5

#	Article	IF	Citations
19	Atmosphere response to pre-earthquake processes revealed by satellite and ground observations. Case study for few strong earthquakes in Xinjiang, China (2008-2014). Annals of Geophysics, 2020, 63, .	0.5	5
20	Thermal radiation effects in the atmosphere initiated by pre-earthquake processes., 2020,,.		1
21	New assessment of linear instrumental ground resolution of Earth remote sensing spacecraft for perfect design of its optoelectronic equipment. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli Iz Kosmosa, 2020, 17, 59-67.	0.1	1
22	Unitary Variation in the Seismic Regime of the Earth: Carnegie-Curve Matching. Geomagnetism and Aeronomy, 2020, 60, 787-792.	0.2	3
23	Cloud anomalies and earthquakes. Geologiya I Geofizika Yuga Rossii, 2020, , .	0.3	1
24	Effects in the Ionosphere after the Chilean Earthquake on February 27, 2010, According to Data of Ground-based Ionosondes. Geomagnetism and Aeronomy, 2019, 59, 628-637.	0.2	3
25	Complex Sounding of The Ionosphere in The Space Experiment on Board of The International Space Station and Transport Cargo "Progress― , 2019, , .		0
26	Determination of Ionospheric Disturbances over Seismic Sources During Large Earthquakes of 2010 by Radiophysical Methods under Conditions of Quiet Geomagnetic Field., 2019,,.		0
27	Deterministic Variability of the lonosphere on the Eve of Strong (M ≥ 6) Earthquakes in the Regions of Greece and Italy According to Long-Term Measurements Data. Geomagnetism and Aeronomy, 2019, 59, 493-508.	0.2	18
28	Tropospheric and Ionospheric Anomalies Induced by Volcanic and Saharan Dust Events as Part of Geosphere Interaction Phenomena. Geosciences (Switzerland), 2019, 9, 177.	1.0	13
29	Detection of Ionospheric Disturbances above the Haiti Region on January 1–15, 2010, according to GPS Data Obtained in Quiet Geomagnetic Conditions. Geomagnetism and Aeronomy, 2019, 59, 743-751.	0.2	4
30	Global Electric Circuit as a Medium for Inter-Geospheres Coupling. , 2018, , .		0
31	Ionosphere Disturbances Preceding Earthquakes according to the Data of Ground Based Station of the Vertical Ionospheric Sounding Wakkanai. Geomagnetism and Aeronomy, 2018, 58, 686-692.	0.2	4
32	The Nocturnal Positive Ionospheric Anomaly of Electron Density as a Short-Term Earthquake Precursor and the Possible Physical Mechanism of Its Formation. Geomagnetism and Aeronomy, 2018, 58, 559-570.	0.2	26
33	System for monitoring and forecasting emergencies: Structure development and prospects of creation. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli Iz Kosmosa, 2017, 14, 41-51.	0.1	0
34	Morphology of midlatitude electron density enhancement using total electron content measurements. Journal of Geophysical Research: Space Physics, 2016, 121, 1503-1517.	0.8	18
35	Multiparameter monitoring of short-term earthquake precursors and its physical basis. Implementation in the Kamchatka region. E3S Web of Conferences, 2016, 11, 00019.	0.2	15
36	Approaches to studying the multiscale ionospheric structure using nanosatellites. Geomagnetism and Aeronomy, 2016, 56, 72-79.	0.2	12

#	Article	IF	CITATIONS
37	The physical background and GPS TEC processing technology for identification of ionospheric anomalies forming over seismically active zones and leading to GNSS signals degradation., 2015,,.		1
38	Physical bases of the generation of short-term earthquake precursors: A complex model of ionization-induced geophysical processes in the lithosphere-atmosphere-ionosphere-magnetosphere system. Geomagnetism and Aeronomy, 2015, 55, 521-538.	0.2	137
39	A spatial analysis on seismo-ionospheric anomalies observed by DEMETER during the 2008 M8.0 Wenchuan earthquake. Journal of Asian Earth Sciences, 2015, 114, 414-419.	1.0	31
40	Electromagnetic effects in atmosphere, ionosphere and magnetosphere initiated by earthquake preparation process. , 2014, , .		0
41	Suspected seismoâ€ionospheric coupling observed by satellite measurements and GPS TEC related to the <i>M</i> 7.9 Wenchuan earthquake of 12 May 2008. Journal of Geophysical Research: Space Physics, 2014, 119, 10,305.	0.8	39
42	Validation of Lithosphere-Atmosphere-lonosphere coupling concept by geo space observation of natural and anthropogenic processes. , 2014, , .		1
43	Synchronization of atmospheric indicators at the last stage of earthquake preparation cycle. Research in Geophysics, 2014, 4, .	0.7	11
44	Ionospheric precursors of earthquakes and Global Electric Circuit. Advances in Space Research, 2014, 53, 709-723.	1.2	142
45	Seismoâ€ionospheric coupling appearing as equatorial electron density enhancements observed via DEMETER electron density measurements. Journal of Geophysical Research: Space Physics, 2014, 119, 8524-8542.	0.8	41
46	Nonlinear broadband doubling of the extraordinary wave frequency in inhomogeneous magnetoactive plasma. Plasma Physics Reports, 2014, 40, 194-201.	0.3	2
47	Computation of the key parameters of radio signals propagating through a perturbed ionosphere in the land-satellite channel. Geomagnetism and Aeronomy, 2013, 53, 204-215.	0.2	1
48	Low-Latitude Atmosphere-Ionosphere Effects Initiated by Strong Earthquakes Preparation Process. International Journal of Geophysics, 2012, 2012, 1-14.	0.4	51
49	Short timescale variations in ionosphere caused by irregular solar electromagnetic radiation. , 2012, ,		0
50	PRE-EARTHQUAKES, an FP7 project for integrating observations and knowledges on earthquake precursors: Preliminary results and strategy. , 2012, , .		2
51	A nonlinear background removal method for seismo-ionospheric anomaly analysis under a complex solar activity scenario: A case study of the M9.0 Tohoku earthquake. Advances in Space Research, 2012, 50, 211-220.	1.2	39
52	Effect of mesoscale atmospheric vortex processes on the upper atmosphere and ionosphere of the Earth. Izvestiya - Atmospheric and Oceanic Physics, 2012, 48, 871-878.	0.2	12
53	Variations of equatorial electrojet as possible seismo-ionospheric precursor at the occurrence of TEC anomalies before strong earthquake. Advances in Space Research, 2012, 49, 509-517.	1.2	21
54	Characteristics of flux-time profiles, temporal evolution, and spatial distribution of radiation-belt electron precipitation bursts in the upper ionosphere before great and giant earthquakes. Annals of Geophysics, 2012, 55, .	0.5	12

#	Article	IF	CITATIONS
55	Lithosphere–Atmosphere–Ionosphere Coupling (LAIC) model – An unified concept for earthquake precursors validation. Journal of Asian Earth Sciences, 2011, 41, 371-382.	1.0	484
56	The synergy of earthquake precursors. Earthquake Science, 2011, 24, 535-548.	0.4	40
57	Atmosphere-ionosphere response to the M9 Tohoku earthquake revealed by multi-instrument space-borne and ground observations: Preliminary results. Earthquake Science, 2011, 24, 557-564.	0.4	112
58	Application of the thermal effect of the atmosphere ionization for remote diagnostics of the radioactive pollution of the atmosphere. Doklady Earth Sciences, 2011, 441, 1560-1563.	0.2	2
59	Formation mechanism of great positive TEC disturbances prior to Wenchuan earthquake on May 12, 2008. Advances in Space Research, 2011, 48, 488-499.	1.2	79
60	Space plasma environment at high and polar latitudes by the Cosmos 1809 satellite topside sounder data. , 2011, , .		1
61	Radiophysical techniques of short-term earthquake precursors and their congruence. The case of L'Aquila earthquake of 06 April 2009. , $2011, , .$		1
62	On the modulation of intensity of Alfv \tilde{A} ©n resonances before earthquakes: Observations and model. Journal of Atmospheric and Solar-Terrestrial Physics, 2010, 72, 1-6.	0.6	6
63	Verification of the concept of seismoionospheric coupling under quiet heliogeomagnetic conditions, using the Wenchuan (China) earthquake of May 12, 2008, as an example. Geomagnetism and Aeronomy, 2010, 50, 231-242.	0.2	64
64	Unique variations of the total electron content in the preparation period of Haitian earthquake (M7.9) on January 12, 2010. Geomagnetism and Aeronomy, 2010, 50, 686-689.	0.2	15
65	Physical mechanism of the vertical electric field generation over active tectonic faults. Advances in Space Research, 2009, 44, 767-773.	1.2	124
66	The first results of the pilot project on complex diagnosing earthquake precursors on Sakhalin. Geomagnetism and Aeronomy, 2009, 49, 115-123.	0.2	13
67	Plasma inhomogeneities in the topside ionosphere in the region of the geomagnetic equator and wave radiation according to the APEX satellite data. Geomagnetism and Aeronomy, 2009, 49, 210-218.	0.2	1
68	Electrostatic radiation of plasma in the upper ionosphere in the inhomogeneous geomagnetic field. Geomagnetism and Aeronomy, 2009, 49, 1254-1256.	0.2	0
69	Role of variations in galactic cosmic rays in tropical cyclogenesis: Evidence of Hurricane Katrina. Doklady Earth Sciences, 2008, 422, 1124-1128.	0.2	21
70	Electromagnetic waves and electrostatic oscillations in an inhomogeneous plasma structure at the geomagnetic equator. Geomagnetism and Aeronomy, 2008, 48, 631-641.	0.2	3
71	Specific variations of air temperature and relative humidity around the time of Michoacan earthquake M8.1 Sept. 19, 1985 as a possible indicator of interaction between tectonic plates. Tectonophysics, 2007, 431, 221-230.	0.9	61
72	Natural radioactivity, earthquakes, and the ionosphere. Eos, 2007, 88, 217-218.	0.1	52

#	Article	IF	CITATIONS
73	Wave emission during a plasma density jump in the auroral zone of the topside ionosphere according to the APEX satellite data. Geomagnetism and Aeronomy, 2007, 47, 739-749.	0.2	O
74	Special case of ionospheric day-to-day variability associated with earthquake preparation. Advances in Space Research, 2007, 39, 970-977.	1.2	69
75	Improvements of the International Reference Ionosphere model for the topside electron density profile. Radio Science, 2006, 41, .	0.8	78
76	Satellite thermal IR phenomena associated with some of the major earthquakes in 1999–2003. Physics and Chemistry of the Earth, 2006, 31, 154-163.	1.2	124
77	The physical nature of thermal anomalies observed before strong earthquakes. Physics and Chemistry of the Earth, 2006, 31, 143-153.	1.2	167
78	Thermal, atmospheric and ionospheric anomalies around the time of the Colima M7.8 earthquake of 21 January 2003. Annales Geophysicae, 2006, 24, 835-849.	0.6	115
79	Plasma wave radiation in the main ionospheric trough in the region of the terminator from the APEX satellite data. Geomagnetism and Aeronomy, 2006, 46, 717-723.	0.2	4
80	Space technologies for short-term earthquake warning. Advances in Space Research, 2006, 37, 643-652.	1.2	31
81	Ground radon exhalation, an electrostatic contribution for upper atmospheric layers processes. Radiation Measurements, 2005, 40, 670-672.	0.7	14
82	Electrostatic Noise Spectrum at the Electron Cyclotron Frequency and Electromagnetic Emission in the Inhomogeneous Plasma of the Topside Ionosphere. Cosmic Research, 2005, 43, 192-198.	0.2	0
83	Indoor Radon and Annual Effective Doses at a High Altitude Region in Central Mexico. Journal of Applied Sciences, 2005, 5, 1356-1362.	0.1	7
84	Variations of the ionospheric electron density during the Bhuj seismic event. Annales Geophysicae, 2004, 22, 4123-4131.	0.6	65
85	Pre-earthquake ionospheric anomalies registered by continuous GPS TEC measurements. Annales Geophysicae, 2004, 22, 1585-1593.	0.6	408
86	Ionospheric variability unrelated to solar and geomagnetic activity. Advances in Space Research, 2004, 34, 1926-1933.	1.2	37
87	A global empirical model of the ionospheric topside electron density. Advances in Space Research, 2004, 34, 2016-2020.	1.2	34
88	Prevention project: a complex geophysical observatory in Mexico as a test facility for lithosphere–atmosphere–ionosphere coupling models. Physics and Chemistry of the Earth, 2004, 29, 657-662.	1.2	2
89	lonospheric Precursors of Earthquakes; Recent Advances in Theory and Practical Applications. Terrestrial, Atmospheric and Oceanic Sciences, 2004, 15, 413.	0.3	182
90	Title is missing!. Cosmic Research, 2003, 41, 221-230.	0.2	93

#	Article	IF	Citations
91	Main phenomenological features of ionospheric precursors of strong earthquakes. Journal of Atmospheric and Solar-Terrestrial Physics, 2003, 65, 1337-1347.	0.6	227
92	Earthquake science research with a microsatellite. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2003, 361, 169-173.	1.6	5
93	The ionospheric perturbations prior to the Chi-Chi and Chia-Yi earthquakes. Journal of Geodynamics, 2002, 33, 509-517.	0.7	32
94	Recent advances in topside profile modeling. Advances in Space Research, 2002, 29, 815-823.	1.2	21
95	Results of the modeling of the topside electron density profile using the Chapman and Epstein functions. Advances in Space Research, 2002, 29, 871-876.	1.2	6
96	Title is missing!. Radiophysics and Quantum Electronics, 2002, 45, 262-268.	0.1	14
97	Modelling bottom and topside electron density and TEC with profile data from topside ionograms. Advances in Space Research, 2001, 27, 31-34.	1.2	8
98	Intercosmos-19 observations of an additional topside ionization layer: the F3 layer. Advances in Space Research, 2001, 27, 1289-1292.	1.2	28
99	lonospheric foF2 variations prior to strong earthquakes in Taiwan area. Advances in Space Research, 2001, 27, 1305-1310.	1.2	24
100	Quasielectrostatic model of atmosphere-thermosphere-ionosphere coupling. Advances in Space Research, 2000, 26, 1209-1218.	1.2	205
101	Seismo-ionospheric signatures prior to M≥6.0 Taiwan earthquakes. Geophysical Research Letters, 2000, 27, 3113-3116.	1.5	250
102	Variability of the Earth's Atmospheric Electric Field and Ion-Aerosols Kinetics in the Troposphere. Studia Geophysica Et Geodaetica, 1998, 42, 197-210.	0.3	22
103	Strong earthquake prediction possibility with the help of topside sounding from satellites. Advances in Space Research, 1998, 21, 455-458.	1.2	51
104	Seismic activity as a source of the ionospheric variability. Advances in Space Research, 1998, 22, 903-906.	1.2	115
105	Unusual longitude modification of the night-time midlatitude F2 region ionosphere in July 1980 over the array of tectonic faults in the Andes area: Observations and interpretation. Geophysical Research Letters, 1998, 25, 4133-4136.	1.5	16
106	The first real-time worldwide ionospheric predictions network: An advance in support of spaceborne experimentation, on-line model validation, and space weather. Geophysical Research Letters, 1998, 25, 449-452.	1.5	11
107	Radon and metallic aerosols emanation before strong earthquakes and their role in atmosphere and ionosphere modification. Advances in Space Research, 1997, 20, 2173-2176.	1.2	82
108	Observation of fundamental magnetoplasma emissions excited in magnetosphere by modulated electron beams. Advances in Space Research, 1995, 15, 21-24.	1.2	16

#	Article	IF	Citations
109	Estimation of plasma density from wave data of cold electron plasma. Advances in Space Research, 1995, 15, 143-146.	1.2	12
110	Definition of disturbance and quietness with topside ionosonde data. Advances in Space Research, 1995, 16, 143-146.	1.2	1
111	Ionospheric changes in response to IMF variations. Journal of Atmospheric and Solar-Terrestrial Physics, 1995, 57, 1415-1432.	0.9	9
112	The H.F. noises as indicator of the ionospheric trough location. Advances in Space Research, 1993, 13, 127-130.	1.2	3
113	The global distribution of ionospheric small-scale irregularities from topside sounding data. Journal of Atmospheric and Solar-Terrestrial Physics, 1992, 54, 1303-1309.	0.9	4
114	Resonant heating of the ionospheric plasma by powerful radiopulses aboard the Intercosmos-19 and Cosmos-1809 satellites. Planetary and Space Science, 1990, 38, 173-180.	0.9	23
115	Longitude features shown by topside sounder data and their importance in ionospheric mapping. Advances in Space Research, 1990, 10, 57-66.	1.2	24
116	lonospheric mapping using satellite data of natural HF noise. Advances in Space Research, 1990, 10, 71-74.	1.2	2
117	Stimulated plasma resonances as an indicator of near-satellite plasma modification by powerful radio emission. Advances in Space Research, 1990, 10, 169-172.	1.2	3
118	Upper hybrid resonance related to a conducting satellite moving through the ionosphere. Advances in Space Research, 1990, 10, 173-175.	1.2	8
119	Broad-band hectometric emission in the topside ionosphere created by ground-based transmitters. Advances in Space Research, 1990, 10, 177-180.	1.2	7
120	Some Type of Broad-Band Emission in the Hectometric Frequency Range Observed Within the lonosphere*. Physica Scripta, 1987, 35, 895-898.	1.2	4
121	lonospheric plasma modification in the vicinity of a spacecraft by powerful radio pulses in topside sounding. Journal of Atmospheric and Solar-Terrestrial Physics, 1986, 48, 149-157.	0.9	26
122	The waves observed in the ARAKS-North Experiment. Advances in Space Research, 1981, 1, 89-95.	1.2	4
123	The waves observed in the ARAKS-East experiment. Advances in Space Research, 1981, 1, 97-101.	1.2	3
124	What is the meaning of a short-term earthquake forecast?. , 0, , .		0
125	Principles of physical-based short-term EQ forecast. , 0, , .		0
126	Multi-parameter exploration of pre-Eq phenomena. , 0, , .		0

#	Article	IF	CITATIONS
127	Earthquake precursors., 0,, 2-1-2-30.		12
128	Short-term physical precursors and their association with Earth inter-geospheres interaction. , 0 , , .		0