
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9069436/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Planetary boundaries: Guiding human development on a changing planet. Science, 2015, 347, 1259855.	12.6	7,124
2	Solutions for a cultivated planet. Nature, 2011, 478, 337-342.	27.8	5,821
3	Understanding relationships among multiple ecosystem services. Ecology Letters, 2009, 12, 1394-1404.	6.4	1,707
4	Ecosystem service bundles for analyzing tradeoffs in diverse landscapes. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 5242-5247.	7.1	1,461
5	Trade-offs across Space, Time, and Ecosystem Services. Ecology and Society, 2006, 11, .	2.3	951
6	Human Impact on Erodable Phosphorus and Eutrophication: A Global Perspective. BioScience, 2001, 51, 227.	4.9	757
7	A broken biogeochemical cycle. Nature, 2011, 478, 29-31.	27.8	734
8	Principles for knowledge co-production in sustainability research. Nature Sustainability, 2020, 3, 182-190.	23.7	697
9	Agronomic phosphorus imbalances across the world's croplands. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 3086-3091.	7.1	654
10	Agriculture production as a major driver of the Earth system exceeding planetary boundaries. Ecology and Society, 2017, 22, .	2.3	576
11	Linking biodiversity, ecosystem services, and human well-being: three challenges for designing research for sustainability. Current Opinion in Environmental Sustainability, 2015, 14, 76-85.	6.3	559
12	Capacity, pressure, demand, and flow: A conceptual framework for analyzing ecosystem service provision and delivery. Ecological Complexity, 2013, 15, 114-121.	2.9	497
13	Bright spots: seeds of a good Anthropocene. Frontiers in Ecology and the Environment, 2016, 14, 441-448.	4.0	414
14	The Future for Fisheries. Science, 2003, 302, 1359-1361.	12.6	385
15	Untangling the Environmentalist's Paradox: Why Is Human Well-being Increasing as Ecosystem Services Degrade?. BioScience, 2010, 60, 576-589.	4.9	358
16	Characterizing the Spatial Patterns of Global Fertilizer Application and Manure Production. Earth Interactions, 2010, 14, 1-22.	1.5	335
17	Agricultural modifications of hydrological flows create ecological surprises. Trends in Ecology and Evolution, 2008, 23, 211-219.	8.7	308
18	Reconsideration of the planetary boundary for phosphorus. Environmental Research Letters, 2011, 6, 014009.	5.2	307

#	Article	IF	CITATIONS
19	Linking Landscape Connectivity and Ecosystem Service Provision: Current Knowledge and Research Gaps. Ecosystems, 2013, 16, 894-908.	3.4	299
20	Global modeling of nature's contributions to people. Science, 2019, 366, 255-258.	12.6	279
21	Advancing sustainability through mainstreaming a social–ecological systems perspective. Current Opinion in Environmental Sustainability, 2015, 14, 144-149.	6.3	274
22	Historical dynamics in ecosystem service bundles. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13411-13416.	7.1	261
23	Scenarios for Ecosystem Services: An Overview. Ecology and Society, 2006, 11, .	2.3	245
24	Unpacking ecosystem service bundles: Towards predictive mapping of synergies and trade-offs between ecosystem services. Global Environmental Change, 2017, 47, 37-50.	7.8	229
25	Anthropogenic Drivers of Ecosystem Change: an Overview. Ecology and Society, 2006, 11, .	2.3	229
26	Key knowledge gaps to achieve global sustainability goals. Nature Sustainability, 2019, 2, 1115-1121.	23.7	193
27	Six modes of co-production for sustainability. Nature Sustainability, 2021, 4, 983-996.	23.7	192
28	Realizing Resilient Food Systems. BioScience, 2016, 66, 600-610.	4.9	186
29	Disentangling the Pathways and Effects of Ecosystem Service Co-Production. Advances in Ecological Research, 2016, , 245-283.	2.7	160
30	The future of production systems in a globalized world. Frontiers in Ecology and the Environment, 2007, 5, 191-198.	4.0	147
31	A Systems Model Approach to Determining Resilience Surrogates for Case Studies. Ecosystems, 2005, 8, 945-957.	3.4	145
32	Effect of woody-plant encroachment on livestock production in North and South America. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12948-12953.	7.1	145
33	The impact of flooding on aquatic ecosystem services. Biogeochemistry, 2018, 141, 439-461.	3.5	142
34	Forest fragments modulate the provision of multiple ecosystem services. Journal of Applied Ecology, 2014, 51, 909-918.	4.0	128
35	Global phosphorus flows through agricultural trade. Global Environmental Change, 2018, 50, 133-141.	7.8	124
36	The role of diet in phosphorus demand. Environmental Research Letters, 2012, 7, 044043.	5.2	114

#	Article	IF	CITATIONS
37	When, Where, and How Nature Matters for Ecosystem Services: Challenges for the Next Generation of Ecosystem Service Models. BioScience, 2017, 67, 820-833.	4.9	114
38	Urban phosphorus sustainability: Systemically incorporating social, ecological, and technological factors into phosphorus flow analysis. Environmental Science and Policy, 2015, 47, 1-11.	4.9	112
39	Assessing Future Ecosystem Services: a Case Study of the Northern Highlands Lake District, Wisconsin. Ecology and Society, 2003, 7, .	0.9	109
40	Welcoming different perspectives in IPBES: "Nature's contributions to people" and "Ecosystem services". Ecology and Society, 2018, 23, .	2.3	108
41	Marine and Coastal Cultural Ecosystem Services: knowledge gaps and research priorities. One Ecosystem, 0, 2, e12290.	0.0	108
42	A Phosphorus Budget for the Lake Mendota Watershed. Ecosystems, 1999, 2, 69-75.	3.4	107
43	The influence of time, soil characteristics, and landâ€use history on soil phosphorus legacies: a global metaâ€analysis. Global Change Biology, 2012, 18, 1904-1917.	9.5	107
44	Scaling the impact of sustainability initiatives: a typology of amplification processes. Urban Transformations, 2020, 2, .	2.4	107
45	Low buffering capacity and slow recovery of anthropogenic phosphorus pollution in watersheds. Nature Geoscience, 2018, 11, 921-925.	12.9	103
46	Interactions Among Ecosystem Services Across Land Uses in a Floodplain Agroecosystem. Ecology and Society, 2014, 19, .	2.3	102
47	Why global scenarios need ecology. Frontiers in Ecology and the Environment, 2003, 1, 322-329.	4.0	100
48	The Influence of Agricultural Trade and Livestock Production on the Global Phosphorus Cycle. Ecosystems, 2012, 15, 256-268.	3.4	98
49	Landscape structure affects the provision of multiple ecosystem services. Environmental Research Letters, 2016, 11, 124017.	5.2	94
50	Strong and nonlinear effects of fragmentation on ecosystem service provision at multiple scales. Environmental Research Letters, 2015, 10, 094014.	5.2	93
51	Changes in anthropogenic nitrogen and phosphorus inputs to the St. Lawrence subâ€basin over 110 years and impacts on riverine export. Global Biogeochemical Cycles, 2016, 30, 1000-1014.	4.9	92
52	A review of riverine ecosystem service quantification: Research gaps and recommendations. Journal of Applied Ecology, 2018, 55, 1299-1311.	4.0	86
53	Feeding the Corn Belt: Opportunities for phosphorus recycling in U.S. agriculture. Science of the Total Environment, 2016, 542, 1117-1126.	8.0	84
54	Key features for more successful place-based sustainability research on social-ecological systems: a Programme on Ecosystem Change and Society (PECS) perspective. Ecology and Society, 2017, 22, .	2.3	84

#	Article	IF	CITATIONS
55	Co-productive agility and four collaborative pathways to sustainability transformations. Global Environmental Change, 2022, 72, 102422.	7.8	77
56	Changing the agriculture and environment conversation. Nature Ecology and Evolution, 2017, 1, 18.	7.8	72
57	A novel telecoupling framework to assess social relations across spatial scales for ecosystem services research. Journal of Environmental Management, 2019, 241, 251-263.	7.8	63
58	Embodied phosphorus and the global connections of United States agriculture. Environmental Research Letters, 2012, 7, 044024.	5.2	62
59	Communicating with the public: opportunities and rewards for individual ecologists. Frontiers in Ecology and the Environment, 2010, 8, 292-298.	4.0	58
60	Agricultural landscape structure affects arthropod diversity and arthropod-derived ecosystem services. Agriculture, Ecosystems and Environment, 2014, 192, 144-151.	5.3	58
61	Landscape structure as a mediator of ecosystem service interactions. Landscape Ecology, 2020, 35, 2863-2880.	4.2	57
62	Research Frontiers in Ecosystem Service Science. Ecosystems, 2017, 20, 31-37.	3.4	56
63	Recovery trends for multiple ecosystem services reveal non-linear responses and long-term tradeoffs from temperate forest harvesting. Forest Ecology and Management, 2016, 374, 61-70.	3.2	55
64	ldentifying key ecosystem service providing areas to inform national-scale conservation planning. Environmental Research Letters, 2021, 16, 014038.	5.2	55
65	Functional diversity and management mediate aboveground carbon stocks in small forest fragments. Ecosphere, 2013, 4, 1-21.	2.2	54
66	Looking to the Future of Ecosystem Services. Ecosystems, 2005, 8, 125-132.	3.4	51
67	Phosphorus Accumulation in Saint Lawrence River Watershed Soils: A Century-Long Perspective. Ecosystems, 2009, 12, 621-635.	3.4	50
68	Seeing the forest for its multiple ecosystem services: Indicators for cultural services in heterogeneous forests. Ecological Indicators, 2016, 71, 123-133.	6.3	50
69	Seeds of good anthropocenes: developing sustainability scenarios for Northern Europe. Sustainability Science, 2020, 15, 605-617.	4.9	48
70	Land-Use Legacies Are Important Determinants of Lake Eutrophication in the Anthropocene. PLoS ONE, 2011, 6, e15913.	2.5	46
71	A Guide to Historical Data Sets for Reconstructing Ecosystem Service Change over Time. BioScience, 2016, 66, 747-762.	4.9	45
72	Phosphorus Cycling in Montreal's Food and Urban Agriculture Systems. PLoS ONE, 2015, 10, e0120726.	2.5	45

#	Article	IF	CITATIONS
73	Soil Phosphorus Variability: Scale-dependence in an Urbanizing Agricultural Landscape. Landscape Ecology, 2005, 20, 389-400.	4.2	44
74	Landâ€use intensity indirectly affects ecosystem services mainly through plant functional identity in a temperate forest. Functional Ecology, 2018, 32, 1390-1399.	3.6	44
75	Climate change and community fisheries in the arctic: A case study from Pangnirtung, Canada. Journal of Environmental Management, 2019, 250, 109534.	7.8	44
76	Distribution of recreational boating across lakes: do landscape variables affect recreational use?. Freshwater Biology, 2000, 43, 439-448.	2.4	43
77	10 Years Later. Advances in Ecological Research, 2015, 53, 1-53.	2.7	43
78	Variability in ecosystem service measurement: a pollination service case study. Frontiers in Ecology and the Environment, 2013, 11, 414-422.	4.0	41
79	Undervalued and under pressure: A plea for greater attention toward regulating ecosystem services. Ecological Indicators, 2018, 94, 23-32.	6.3	41
80	Spatio-temporal dynamics of groundwater storage changes in the Yellow River Basin. Journal of Environmental Management, 2019, 235, 84-95.	7.8	41
81	Are Existing Global Scenarios Consistent with Ecological Feedbacks?. Ecosystems, 2005, 8, 143-152.	3.4	40
82	Key information needs to move from knowledge to action for biodiversity conservation in Canada. Biological Conservation, 2021, 256, 108983.	4.1	40
83	Temperate forest fragments maintain aboveground carbon stocks out to the forest edge despite changes in community composition. Oecologia, 2014, 176, 893-902.	2.0	38
84	Landscape connectivity and insect herbivory: A framework for understanding tradeoffs among ecosystem services. Global Ecology and Conservation, 2015, 4, 73-84.	2.1	38
85	Differential influence of landscape features and climate on nitrogen and phosphorus transport throughout the watershed. Biogeochemistry, 2019, 142, 155-174.	3.5	38
86	Science for the sustainable use of ecosystem services. F1000Research, 2016, 5, 2622.	1.6	36
87	Phosphorus flows and legacy accumulation in an animal-dominated agricultural region from 1925 to 2012. Global Environmental Change, 2018, 50, 88-99.	7.8	36
88	A framework for assessing community adaptation to climate change in a fisheries context. Environmental Science and Policy, 2019, 92, 17-26.	4.9	36
89	Functional organization analysis for the design of sustainable engineering systems. Ecological Engineering, 2014, 73, 80-91.	3.6	35
90	Bright spots in agricultural landscapes: Identifying areas exceeding expectations for multifunctionality and biodiversity. Journal of Applied Ecology, 2018, 55, 2731-2743.	4.0	35

#	Article	IF	CITATIONS
91	Effects of land use, cover, and protection on stream and riparian ecosystem services and biodiversity. Conservation Biology, 2020, 34, 244-255.	4.7	35
92	The Montérégie Connection: linking landscapes, biodiversity, and ecosystem services to improve decision making. Ecology and Society, 2015, 20, .	2.3	34
93	Resilience trinity: safeguarding ecosystem functioning and services across three different time horizons and decision contexts. Oikos, 2020, 129, 445-456.	2.7	33
94	Ecosystem services and the resilience of agricultural landscapes. Advances in Ecological Research, 2021, , 1-43.	2.7	33
95	Benthic-based contributions to climate change mitigation and adaptation. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190107.	4.0	30
96	A novel approach for co-producing positive scenarios that explore agency: case study from the Canadian Arctic. Sustainability Science, 2019, 14, 205-220.	4.9	29
97	Climate change and adaptation to social-ecological change: the case of indigenous people and culture-based fisheries in Sri Lanka. Climatic Change, 2020, 162, 279-300.	3.6	29
98	Advancing a toolkit of diverse futures approaches for global environmental assessments. Ecosystems and People, 2021, 17, 191-204.	3.2	29
99	Patchwork Earth: navigating pathways to just, thriving, and sustainable futures. One Earth, 2021, 4, 172-176.	6.8	29
100	A TEST OF THE ENVIRONMENTAL KUZNETS CURVE USING LONG-TERM WATERSHED INPUTS. , 2004, 14, 555-570).	28
101	The surprisingly small but increasing role of international agricultural trade on the European Union's dependence on mineral phosphorus fertiliser. Environmental Research Letters, 2016, 11, 025003.	5.2	28
102	Watershed Buffering of Legacy Phosphorus Pressure at a Regional Scale: A Comparison Across Space and Time. Ecosystems, 2019, 22, 91-109.	3.4	27
103	Soil Phosphorus Concentrations in Dane County, Wisconsin, USA: An Evaluation of the Urban?Rural Gradient Paradigm. Environmental Management, 2003, 32, 476-487.	2.7	25
104	Regional Differences in Phosphorus Budgets in Intensive Soybean Agriculture. BioScience, 2013, 63, 49-54.	4.9	23
105	Dynamic simulation of phosphorus flows through Montreal's food and waste systems. Resources, Conservation and Recycling, 2018, 131, 122-133.	10.8	23
106	Ecosystem service bundles in global hinterlands. Environmental Research Letters, 2019, 14, 084005.	5.2	23
107	Earth stewardship: Shaping a sustainable future through interacting policy and norm shifts. Ambio, 2022, 51, 1907-1920.	5.5	23
108	Environmental and social predictors of phosphorus in urban streams on the Island of Montréal, Québec. Urban Ecosystems, 2011, 14, 485-499.	2.4	22

ELENA BENNETT

#	Article	IF	CITATIONS
109	Trade in the US and Mexico helps reduce environmental costs of agriculture. Environmental Research Letters, 2016, 11, 055004.	5.2	22
110	Adapting to climate change in small-scale fisheries: Insights from indigenous communities in the global north and south. Environmental Science and Policy, 2021, 116, 160-170.	4.9	22
111	Principle 2 – Manage connectivity. , 2015, , 80-104.		21
112	Towards integrated knowledge of climate change in Arctic marine systems: a systematic literature review of multidisciplinary research. Arctic Science, 2020, 6, 1-23.	2.3	21
113	Socio-ecological determinants on spatio-temporal changes of groundwater in the Yellow River Basin, China. Science of the Total Environment, 2020, 731, 138725.	8.0	21
114	Land-use intensity mediates ecosystem service tradeoffs across regional social-ecological systems. Ecosystems and People, 2021, 17, 264-278.	3.2	21
115	Farmland heterogeneity is associated with gains in some ecosystem services but also potential trade-offs. Agriculture, Ecosystems and Environment, 2021, 322, 107661.	5.3	20
116	Seeds of the Future in the Present. , 2018, , 327-350.		19
117	Governance in the Face of Extreme Events: Lessons from Evolutionary Processes for Structuring Interventions, and the Need to Go Beyond. Ecosystems, 2022, 25, 697-711.	3.4	18
118	Advancing research on ecosystem service bundles for comparative assessments and synthesis. Ecosystems and People, 2022, 18, 99-111.	3.2	18
119	Phosphorus and land-use changes are significant drivers of cladoceran community composition and diversity: an analysis over spatial and temporal scales. Canadian Journal of Fisheries and Aquatic Sciences, 2010, 67, 1262-1273.	1.4	17
120	Researcher engagement in policy deemed societally beneficial yet unrewarded. Frontiers in Ecology and the Environment, 2019, 17, 375-382.	4.0	17
121	A brighter future: Complementary goals of diversity and multifunctionality to build resilient agricultural landscapes. Global Food Security, 2020, 26, 100407.	8.1	17
122	Social networks influence farming practices and agrarian sustainability. PLoS ONE, 2021, 16, e0244619.	2.5	17
123	Extrinsic vs. Intrinsic Regimes Shifts in Shallow Lakes: Long-Term Response of Cyanobacterial Blooms to Historical Catchment Phosphorus Loading and Climate Warming. Frontiers in Ecology and Evolution, 2017, 5, .	2.2	15
124	Reconsidering non-traditional export agriculture and household food security: A case study in rural Guatemala. PLoS ONE, 2018, 13, e0198113.	2.5	15
125	Biophysical indicators and Indigenous and Local Knowledge reveal climatic and ecological shifts with implications for Arctic Char fisheries. Global Environmental Change, 2022, 74, 102469.	7.8	15
126	Tropical teleconnections. Nature Geoscience, 2010, 3, 154-155.	12.9	14

#	Article	IF	CITATIONS
127	Within and Among Patch Variability in Patterns of Insect Herbivory Across a Fragmented Forest Landscape. PLoS ONE, 2016, 11, e0150843.	2.5	13
128	Synthesis of the Storylines. Ecology and Society, 2006, 11, .	2.3	12
129	Effect of fragmentation on predation pressure of insect herbivores in a north temperate deciduous forest ecosystem. Ecological Entomology, 2015, 40, 182-186.	2.2	12
130	Phosphorus is a key component of the resource demands for meat, eggs, and dairy production in the United States. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E4906-7.	7.1	11
131	Agro-biodiversity has increased over a 95 year period at sub-regional and regional scales in southern Quebec, Canada. Environmental Research Letters, 2016, 11, 124024.	5.2	11
132	Identifying hotspots and representative monitoring area of groundwater changes with time stability analysis. Science of the Total Environment, 2019, 667, 419-426.	8.0	11
133	Cropland patchiness strongest agricultural predictor of bird diversity for multiple guilds in landscapes of Ontario, Canada. Regional Environmental Change, 2018, 18, 2105-2115.	2.9	9
134	The role of the social network structure on the spread of intensive agriculture: an example from Navarre, Spain. Regional Environmental Change, 2020, 20, 1.	2.9	9
135	Facing the challenges of using place-based social-ecological research to support ecosystem service governance at multiple scales. Ecosystems and People, 2021, 17, 574-589.	3.2	9
136	The Paradox Persists: How to Resolve It. BioScience, 2011, 61, 11-12.	4.9	8
137	Landscape and local factors influence water purification in the Monteregian agroecosystem in Québec, Canada. Regional Environmental Change, 2015, 15, 1743-1755.	2.9	8
138	The six dimensions of collective leadership that advance sustainability objectives: rethinking what it means to be an academic leader. Ecology and Society, 2021, 26, .	2.3	8
139	Facilitators & barriers to organic waste and phosphorus re-use in Montreal. Elementa, 2015, 3, .	3.2	8
140	Identifying pathways to reduce discrepancies between desired and provided ecosystem services. Ecosystem Services, 2020, 43, 101119.	5.4	7
141	Bright spots for inland fish and fisheries to guide future hydropower development. , 2022, 1, 100009.		7
142	Property rights play a pivotal role in the distribution of ecosystem services among beneficiaries. Ecosystems and People, 2022, 18, 131-145.	3.2	7
143	The Phosphorus Cycle. , 2013, , 159-178.		6
144	The relationship between watershed protection and water quality: The case of Québec, Canada. Freshwater Science, 2021, 40, 382-396.	1.8	6

#	Article	IF	CITATIONS
145	Learning from the future: mainstreaming disruptive solutions for the transition to sustainable food systems. Environmental Research Letters, 2022, 17, 051002.	5.2	6
146	Estimating the Risk of Exceeding Thresholds in Environmental Systems. Water, Air, and Soil Pollution, 2008, 191, 131-138.	2.4	5
147	Contrasting responses of soybean aphids, primary parasitoids, and hyperparasitoids to forest fragments and agricultural landscape structure. Agriculture, Ecosystems and Environment, 2022, 326, 107752.	5.3	5
148	Social media as a tool for improving research and teaching. Frontiers in Ecology and the Environment, 2014, 12, 259-259.	4.0	4
149	Conservation of a transboundary lake: Historical watershed and paleolimnological analyses can inform management strategies. Lake and Reservoir Management, 2011, 27, 355-364.	1.3	3
150	Bright spots of carbon storage in temperate forests. Journal of Applied Ecology, 2021, 58, 3012-3022.	4.0	3
151	The role of management instruments in the diversion of organic municipal solid waste and phosphorus recycling. Facets, 2018, 3, 896-919.	2.4	3
152	Determining the value of ecosystem services in agriculture. , 2019, , 60-89.		2
153	Bright spots among lakes in the Rideau Valley Watershed, Ontario. Ecology and Society, 2019, 24, .	2.3	2
154	Sugar maple tree canopies as reservoirs for arthropod functional diversity in forest patches across a fragmented agricultural landscape in southern Quebec, Canada. Ecoscience, 2016, 23, 1-12.	1.4	1
155	The Phosphorus Cycle. , 2021, , 189-213.		1
156	Response to Kabisch and Colleagues. BioScience, 2018, 68, 167-168.	4.9	0
157	The Montérégie Connection: Understanding How Ecosystems Can Provide Resilience to the Risk of Ecosystem Service Change. , 2019, , 291-300.		Ο
158	Managing Canada's land- and seascapes for multiple ecosystem services in the Anthropocene: introduction to the Food, Fiber, Fuel, and Function collection. Facets, 2021, 6, 1986-1992.	2.4	0
159	Tree biodiversity in northern forests shows temporal stability over 35 years at different scales, levels, and dimensions. Journal of Ecology, 0, , .	4.0	Ο