Jason Talbott

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9069085/publications.pdf Version: 2024-02-01

IASON TALBOTT

#	Article	IF	CITATIONS
1	Mean Arterial Blood Pressure Correlates with Neurological Recovery after Human Spinal Cord Injury: Analysis of High Frequency Physiologic Data. Journal of Neurotrauma, 2015, 32, 1958-1967.	3.4	187
2	Automatic segmentation of the spinal cord and intramedullary multiple sclerosis lesions with convolutional neural networks. NeuroImage, 2019, 184, 901-915.	4.2	163
3	Spatial distribution of multiple sclerosis lesions in the cervical spinal cord. Brain, 2019, 142, 633-646.	7.6	75
4	Higher Mean Arterial Pressure Values Correlate with Neurologic Improvement in Patients with Initially Complete Spinal Cord Injuries. World Neurosurgery, 2016, 96, 72-79.	1.3	58
5	Multivariate Analysis of MRI Biomarkers for Predicting Neurologic Impairment in Cervical Spinal Cord Injury. American Journal of Neuroradiology, 2017, 38, 648-655.	2.4	44
6	Convolutional Neural Network–Based Automated Segmentation of the Spinal Cord and Contusion Injury: Deep Learning Biomarker Correlates of Motor Impairment in Acute Spinal Cord Injury. American Journal of Neuroradiology, 2019, 40, 737-744.	2.4	44
7	Multiple sclerosis lesions in motor tracts from brain to cervical cord: spatial distribution and correlation with disability. Brain, 2020, 143, 2089-2105.	7.6	34
8	141: HYPOTENSIVE EPISODES EARLY AFTER SCI ASSOCIATED WITH LOWER MAP IN ICU: A PROSPECTIVE TRACK-SCI STUDY. Critical Care Medicine, 2018, 46, 53-53.	0.9	33
9	MR Imaging for Assessing Injury Severity and Prognosis in Acute Traumatic Spinal Cord Injury. Radiologic Clinics of North America, 2019, 57, 319-339.	1.8	33
10	Calvarial Fracture Patterns on CT Imaging Predict Risk of a Delayed Epidural Hematoma following Decompressive Craniectomy for Traumatic Brain Injury. American Journal of Neuroradiology, 2014, 35, 1930-1935.	2.4	30
11	Clinical Utility of Diffusion-Weighted Imaging in Spinal Infections. Clinical Neuroradiology, 2019, 29, 515-522.	1.9	27
12	Peripheral nerve imaging. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2016, 136, 811-826.	1.8	25
13	MRI Atlas-Based Measurement of Spinal Cord Injury Predicts Outcome in Acute Flaccid Myelitis. American Journal of Neuroradiology, 2017, 38, 410-417.	2.4	25
14	An Imaging-Based Approach to Spinal Cord Infection. Seminars in Ultrasound, CT and MRI, 2016, 37, 411-430.	1.5	24
15	Practical applications of CISS MRI in spine imaging. European Journal of Radiology Open, 2019, 6, 231-242.	1.6	22
16	Tumor Fistulization Associated With Targeted Therapy. Journal of Computer Assisted Tomography, 2011, 35, 86-90.	0.9	18
17	Imaging-Based Approach to Extradural Infections of the Spine. Seminars in Ultrasound, CT and MRI, 2018, 39, 570-586.	1.5	15
18	Use of the Implicit Association Test to Improve Diversity in Radiology. Journal of the American College of Radiology, 2019, 16, 976-979.	1.8	14

JASON TALBOTT

#	Article	IF	CITATIONS
19	[¹⁸ F]-Sodium Fluoride PET MR–Based Localization and Quantification of Bone Turnover as a Biomarker for Facet Joint–Induced Disability. American Journal of Neuroradiology, 2017, 38, 2028-2031.	2.4	13
20	Between Always and Never: Evaluating Uncertainty in Radiology Reports Using Natural Language Processing. Journal of Digital Imaging, 2020, 33, 1194-1201.	2.9	11
21	Facial Feminization Surgery: Key CT Findings for Preoperative Planning and Postoperative Evaluation. American Journal of Roentgenology, 2021, 217, 709-717.	2.2	11
22	Ex-PRESS glaucoma filter: an MRI compatible metallic orbital foreign body imaged at 1.5 and 3T. Clinical Radiology, 2015, 70, e28-e34.	1.1	10
23	Brain MRI Features of CSF Human Immunodeficiency Virus Escape. Journal of Neuroimaging, 2018, 28, 601-607.	2.0	8
24	CT-Guided Block and Radiofrequency Ablation of the C2 Dorsal Root Ganglion for Cervicogenic Headache. American Journal of Neuroradiology, 2019, 40, 1433-1436.	2.4	8
25	The regional pattern of abnormal cerebrovascular reactivity in HIV-infected, virally suppressed women. Journal of NeuroVirology, 2020, 26, 734-742.	2.1	8
26	Utility of Repeat Head CT in Patients with Blunt Traumatic Brain Injury Presenting with Small Isolated Falcine or Tentorial Subdural Hematomas. American Journal of Neuroradiology, 2018, 39, 654-657.	2.4	6
27	Gunshot wound causing anterior spinal cord infarction due to injury to the artery of Adamkiewicz. Spine Journal, 2016, 16, e603-e604.	1.3	3
28	Response to Cadotte et al. (doi: 10.1089/neu.2018.5903): What Has Been Learned from Magnetic Resonance Imaging Examination of the Injured Human Spinal Cord: A Canadian Perspective. Journal of Neurotrauma, 2019, 36, 1386-1387.	3.4	2
29	Low Yield of Paired Head and Cervical Spine Computed Tomography in Blunt Trauma Evaluation. Journal of Emergency Medicine, 2018, 54, 749-756.	0.7	1
30	Is Dual-Energy CT Ready for Prime Time in Traumatic Brain Injury?. Radiology, 2019, 292, 739-740.	7.3	1
31	The Mask Sign—An Imaging Marker of Traumatic Spinal Cord Hemorrhage. JAMA Neurology, 2019, 76, 1515.	9.0	1
32	In Vivo Monitoring of Rat Spinal Cord Metabolism Using Hyperpolarized Carbon-13 MR Spectroscopic Imaging. American Journal of Neuroradiology, 2016, 37, 2407-2409.	2.4	0
33	Optimal Noninvasive Imaging for Suspected Zygapophyseal (Facet)â€Mediated Low Back Pain. PM and R, 2016, 8, 586-592.	1.6	0
34	Dissecting the Natural History of Blunt Cerebrovascular Injury. Radiology, 2020, 297, 436-437.	7.3	0
35	Deep Learning and the OPERA Trials for Multiple Sclerosis. Radiology, 2022, 302, 674-675.	7.3	0