Songcheng Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9068986/publications.pdf

Version: 2024-02-01

759233 839539 18 724 12 18 citations h-index g-index papers 18 18 18 1261 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	N 6-Methyladenosine modification of lincRNA 1281 is critically required for mESC differentiation potential. Nucleic Acids Research, 2018, 46, 3906-3920.	14.5	208
2	Lysine Acetyltransferase GCN5 Potentiates the Growth of Non-small Cell Lung Cancer via Promotion of E2F1, Cyclin D1, and Cyclin E1 Expression. Journal of Biological Chemistry, 2013, 288, 14510-14521.	3.4	113
3	A Linc1405/Eomes Complex Promotes Cardiac Mesoderm Specification and Cardiogenesis. Cell Stem Cell, 2018, 22, 893-908.e6.	11.1	76
4	HDAC10 promotes lung cancer proliferation via AKT phosphorylation. Oncotarget, 2016, 7, 59388-59401.	1.8	51
5	Sin3a–Tet1 interaction activates gene transcription and is required for embryonic stem cell pluripotency. Nucleic Acids Research, 2018, 46, 6026-6040.	14.5	49
6	Sirt6 Promotes DNA End Joining in iPSCs Derived from Old Mice. Cell Reports, 2017, 18, 2880-2892.	6.4	37
7	MicroRNA-153 improves the neurogenesis of neural stem cells and enhances the cognitive ability of aged mice through the notch signaling pathway. Cell Death and Differentiation, 2020, 27, 808-825.	11.2	35
8	HDAC10 promotes angiogenesis in endothelial cells through the PTPN22/ERK axis. Oncotarget, 2017, 8, 61338-61349.	1.8	26
9	RTL1 promotes melanoma proliferation by regulating Wnt/ \hat{l}^2 -catenin signalling. Oncotarget, 2017, 8, 106026-106037.	1.8	26
10	An HDAC2-TET1 switch at distinct chromatin regions significantly promotes the maturation of pre-iPS to iPS cells. Nucleic Acids Research, 2015, 43, 5409-5422.	14.5	23
11	<i>PAUPAR</i> and PAX6 sequentially regulate human embryonic stem cell cortical differentiation. Nucleic Acids Research, 2021, 49, 1935-1950.	14.5	17
12	Dysregulation of the SIRT1/OCT6 Axis Contributes to Environmental Stress-Induced Neural Induction Defects. Stem Cell Reports, 2017, 8, 1270-1286.	4.8	16
13	MiR-495 suppresses mesendoderm differentiation of mouse embryonic stem cells via the direct targeting of Dnmt3a. Stem Cell Research, 2014, 12, 550-561.	0.7	12
14	LncRNA <i>SOX1â€OT</i> V1 acts as a decoy of HDAC10 to promote SOX1â€dependent hESC neuronal differentiation. EMBO Reports, 2022, 23, e53015.	4.5	11
15	Long noncoding RNA Q associates with Sox2 and is involved in the maintenance of pluripotency in mouse embryonic stem cells. Stem Cells, 2020, 38, 834-848.	3.2	8
16	A Motif from Lys216 to Lys222 in Human BUB3 Protein Is a Nuclear Localization Signal and Critical for BUB3 Function in Mitotic Checkpoint. Journal of Biological Chemistry, 2015, 290, 11282-11292.	3.4	6
17	Pwp1 regulates telomere length by stabilizing shelterin complex and maintaining histone H4K20 trimethylation. Cell Discovery, 2019, 5, 47.	6.7	5
18	Motifs in the amino-terminus of CENP-A are required for its accumulation within the nucleus and at the centromere. Oncotarget, 2017, 8, 40654-40667.	1.8	5