Maria M Miteva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/906877/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Machine learning-driven identification of drugs inhibiting cytochrome P450 2C9. PLoS Computational Biology, 2022, 18, e1009820.	3.2	11
2	New machine learning and physics-based scoring functions for drug discovery. Scientific Reports, 2021, 11, 3198.	3.3	91
3	Insights into the substrate binding mechanism of SULT1A1 through molecular dynamics with excited normal modes simulations. Scientific Reports, 2021, 11, 13129.	3.3	16
4	Computational Analysis of Chemical Space of Natural Compounds Interacting with Sulfotransferases. Molecules, 2021, 26, 6360.	3.8	3
5	Anti-Factor B Antibodies and Acute Postinfectious GN in Children. Journal of the American Society of Nephrology: JASN, 2020, 31, 829-840.	6.1	50
6	Analysis of protein missense alterations by combining sequence―and structureâ€based methods. Molecular Genetics & Genomic Medicine, 2020, 8, e1166.	1.2	25
7	Fr-PPIChem: An Academic Compound Library Dedicated to Protein–Protein Interactions. ACS Chemical Biology, 2020, 15, 1566-1574.	3.4	29
8	Comparative structural and evolutionary analyses predict functional sites in the artemisinin resistance malaria protein K13. Scientific Reports, 2019, 9, 10675.	3.3	28
9	A Free Web-Based Protocol to Assist Structure-Based Virtual Screening Experiments. International Journal of Molecular Sciences, 2019, 20, 4648.	4.1	16
10	Analysis of solvent-exposed and buried co-crystallized ligands: a case study to support the design of novel protein–protein interaction inhibitors. Drug Discovery Today, 2019, 24, 551-559.	6.4	20
11	Insights into molecular mechanisms of drug metabolism dysfunction of human CYP2C9*30. PLoS ONE, 2018, 13, e0197249.	2.5	24
12	Online structure-based screening of purchasable approved drugs and natural compounds: retrospective examples of drug repositioning on cancer targets. Oncotarget, 2018, 9, 32346-32361.	1.8	25
13	Structural Dynamics of DPP-4 and Its Influence on the Projection of Bioactive Ligands. Molecules, 2018, 23, 490.	3.8	25
14	Insights into the interaction of high potency inhibitor IRCâ€083864 with phosphatase CDC25. Proteins: Structure, Function and Bioinformatics, 2017, 85, 593-601.	2.6	7
15	Computational Biology and Chemistry in MTi: Emphasis on the Prediction of Some ADMET Properties. Molecular Informatics, 2017, 36, 1700008.	2.5	3
16	Computational analysis of calculated physicochemical and ADMET properties of protein-protein interaction inhibitors. Scientific Reports, 2017, 7, 46277.	3.3	128
17	FAF-Drugs4: free ADME-tox filtering computations for chemical biology and early stages drug discovery. Bioinformatics, 2017, 33, 3658-3660.	4.1	230
18	In silico model of the human ClC-Kb chloride channel: pore mapping, biostructural pathology and drug screening. Scientific Reports, 2017, 7, 7249.	3.3	15

MARIA Μ ΜΙΤΕνΑ

#	Article	IF	CITATIONS
19	Identification of insulin-sensitizing molecules acting by disrupting the interaction between the Insulin Receptor and Grb14. Scientific Reports, 2017, 7, 16901.	3.3	4
20	AMMOS2: a web server for protein–ligand–water complexes refinement via molecular mechanics. Nucleic Acids Research, 2017, 45, W350-W355.	14.5	24
21	Pan-assay interference compounds (PAINS) that may not be too painful for chemical biology projects. Drug Discovery Today, 2017, 22, 1131-1133.	6.4	26
22	Pharmacogenomics of the cytochrome P450 2C family: impacts of amino acid variations on drug metabolism. Drug Discovery Today, 2017, 22, 366-376.	6.4	58
23	Blockade of the malignant phenotype by <i>\hat{l}^2</i> -subunit selective noncovalent inhibition of immuno- and constitutive proteasomes. Oncotarget, 2017, 8, 10437-10449.	1.8	13
24	Discoidin Domains as Emerging Therapeutic Targets. Trends in Pharmacological Sciences, 2016, 37, 641-659.	8.7	21
25	Assessment of some pesticides interactions with human cytochrome P450: CYP2C8, CYP2C9 and CYP2C19 by molecular docking approach. AIP Conference Proceedings, 2016, , .	0.4	0
26	Binding of phenothiazines into allosteric hydrophobic pocket of human thioredoxin 1. European Biophysics Journal, 2016, 45, 279-286.	2.2	3
27	iPPI-DB: an online database of modulators of protein–protein interactions. Nucleic Acids Research, 2016, 44, D542-D547.	14.5	49
28	Stabilization of protein–protein interaction complexes through small molecules. Drug Discovery Today, 2016, 21, 48-57.	6.4	41
29	In Silico Approaches Assisting the Rational Design of Low Molecular Weight Protein–Protein Interaction Modulators. , 2015, , 441-482.		0
30	FAF-Drugs3: a web server for compound property calculation and chemical library design. Nucleic Acids Research, 2015, 43, W200-W207.	14.5	237
31	Tampering with Cell Division by Using Smallâ€Molecule Inhibitors of CDK–CKS Protein Interactions. ChemBioChem, 2015, 16, 432-439.	2.6	6
32	In silico design of low molecular weight protein–protein interaction inhibitors: Overall concept and recent advances. Progress in Biophysics and Molecular Biology, 2015, 119, 20-32.	2.9	56
33	MTiOpenScreen: a web server for structure-based virtual screening. Nucleic Acids Research, 2015, 43, W448-W454.	14.5	159
34	Integrated structure- and ligand-based <i>in silico</i> approach to predict inhibition of cytochrome P450 2D6. Bioinformatics, 2015, 31, 3930-3937.	4.1	27
35	Sampling of conformational ensemble for virtual screening using molecular dynamics simulations and normal mode analysis. Future Medicinal Chemistry, 2015, 7, 2317-2331.	2.3	22
36	Rational Design of Small-Molecule Stabilizers of Spermine Synthase Dimer by Virtual Screening and Free Energy-Based Approach. PLoS ONE, 2014, 9, e110884.	2.5	20

MARIA M MITEVA

#	Article	IF	CITATIONS
37	Drugâ€Like ProteinProtein Interaction Modulators: Challenges and Opportunities for Drug Discovery and Chemical Biology. Molecular Informatics, 2014, 33, 414-437.	2.5	93
38	Discovery of novel inhibitors of vascular endothelial growth factor-A–Neuropilin-1 interaction by structure-based virtual screening. Bioorganic and Medicinal Chemistry, 2014, 22, 4042-4048.	3.0	35
39	Advances in Molecular Modeling of Human Cytochrome P450 Polymorphism. Journal of Molecular Biology, 2013, 425, 3978-3992.	4.2	39
40	Computational analysis of protein-protein interfaces involving an alpha helix: insights for terphenyl–like molecules binding. BMC Pharmacology & Toxicology, 2013, 14, 31.	2.4	9
41	One hundred thousand mouse clicks down the road: selected online resources supporting drug discovery collected over a decade. Drug Discovery Today, 2013, 18, 1081-1089.	6.4	76
42	A rational free energy-based approach to understanding and targeting disease-causing missense mutations. Journal of the American Medical Informatics Association: JAMIA, 2013, 20, 643-651.	4.4	18
43	Post-Docking Optimization and Analysis of Protein-Ligand Interactions of Estrogen Receptor Alpha using AMMOS Software. Current Computer-Aided Drug Design, 2013, 9, 83-94.	1.2	Ο
44	Insights into an Original Pocket-Ligand Pair Classification: A Promising Tool for Ligand Profile Prediction. PLoS ONE, 2013, 8, e63730.	2.5	18
45	1,2,4-Oxadiazoles Identified by Virtual Screening and their Non-Covalent Inhibition of the Human 20S Proteasome. Current Medicinal Chemistry, 2013, 20, 2351-2362.	2.4	25
46	In Silico Mechanistic Profiling to Probe Small Molecule Binding to Sulfotransferases. PLoS ONE, 2013, 8, e73587.	2.5	23
47	Post-Docking Optimization and Analysis of Protein-Ligand Interactions of Estrogen Receptor Alpha using AMMOS Software. Current Computer-Aided Drug Design, 2013, 9, 83-94.	1.2	5
48	Post-docking optimization and analysis of protein-ligand interactions of estrogen receptor alpha using AMMOS software. Current Computer-Aided Drug Design, 2013, 9, 83-94.	1.2	3
49	Analyzing Effects of Naturally Occurring Missense Mutations. Computational and Mathematical Methods in Medicine, 2012, 2012, 1-15.	1.3	111
50	Design and synthesis of novel bis-thiazolone derivatives as micromolar CDC25 phosphatase inhibitors: Effect of dimerisation on phosphatase inhibition. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 7345-7350.	2.2	19
51	In Silico Prediction of Aqueous Solubility: A Multimodel Protocol Based on Chemical Similarity. Molecular Pharmaceutics, 2012, 9, 3127-3135.	4.6	33
52	Toward in silico structure-based ADMET prediction in drug discovery. Drug Discovery Today, 2012, 17, 44-55.	6.4	220
53	AMMOS Software: Method and Application. Methods in Molecular Biology, 2012, 819, 127-141.	0.9	2
54	Tyrosine Kinase Syk Non-Enzymatic Inhibitors and Potential Anti-Allergic Drug-Like Compounds Discovered by Virtual and In Vitro Screening. PLoS ONE, 2011, 6, e21117.	2.5	23

MARIA Μ ΜΙΤΕνΑ

#	Article	IF	CITATIONS
55	Targeting the Proangiogenic VEGF-VEGFR Protein-Protein Interface with Drug-like Compounds by In Silico and InÂVitro Screening. Chemistry and Biology, 2011, 18, 1631-1639.	6.0	38
56	Three-dimensional structure generators of drug-like compounds: DG-AMMOS, an open-source package. Expert Opinion on Drug Discovery, 2011, 6, 339-351.	5.0	9
57	Exploring NMR ensembles of calcium binding proteins: Perspectives to design inhibitors of protein-protein interactions. BMC Structural Biology, 2011, 11, 24.	2.3	15
58	The FAF-Drugs2 server: a multistep engine to prepare electronic chemical compound collections. Bioinformatics, 2011, 27, 2018-2020.	4.1	81
59	How to choose relevant multiple receptor conformations for virtual screening: a test case of Cdk2 and normal mode analysis. European Biophysics Journal, 2010, 39, 1365-1372.	2.2	68
60	Druggable pockets and binding site centric chemical space: a paradigm shift in drug discovery. Drug Discovery Today, 2010, 15, 656-667.	6.4	249
61	Post-docking virtual screening of diverse binding pockets: Comparative study using DOCK, AMMOS, X-Score and FRED scoring functions. European Journal of Medicinal Chemistry, 2010, 45, 2622-2628.	5.5	24
62	Frog2: Efficient 3D conformation ensemble generator for small compounds. Nucleic Acids Research, 2010, 38, W622-W627.	14.5	224
63	Genetic, molecular and functional analyses of complement factor I deficiency. European Journal of Immunology, 2009, 39, 310-323.	2.9	53
64	DG-AMMOS: A New tool to generate 3D conformation of small molecules using Distance Geometry and Automated Molecular Mechanics Optimization for in silico Screening. BMC Chemical Biology, 2009, 9, 6.	1.6	38
65	MED-3DMC: A new tool to generate 3D conformation ensembles of small molecules with a Monte Carlo sampling of the conformational space. European Journal of Medicinal Chemistry, 2009, 44, 1405-1409.	5.5	26
66	Structure-Based Virtual Ligand Screening: Recent Success Stories. Combinatorial Chemistry and High Throughput Screening, 2009, 12, 1000-1016.	1.1	114
67	MS-DOCK: Accurate multiple conformation generator and rigid docking protocol for multi-step virtual ligand screening. BMC Bioinformatics, 2008, 9, 184.	2.6	102
68	FAF-Drugs2: Free ADME/tox filtering tool to assist drug discovery and chemical biology projects. BMC Bioinformatics, 2008, 9, 396.	2.6	221
69	AMMOS: Automated Molecular Mechanics Optimization tool for in silico Screening. BMC Bioinformatics, 2008, 9, 438.	2.6	44
70	Receptor-Based Virtual Ligand Screening for the Identification of Novel CDC25 Phosphatase Inhibitors. Journal of Chemical Information and Modeling, 2008, 48, 157-165.	5.4	43
71	Hierarchical Structure-Based Virtual Screening for Drug Design. Biotechnology and Biotechnological Equipment, 2008, 22, 634-638.	1.3	9
72	In Silico-In Vitro Screening of Protein-Protein Interactions: Towards the Next Generation of Therapeutics. Current Pharmaceutical Biotechnology, 2008, 9, 103-122.	1.6	59

MARIA Μ ΜΙΤΕνΑ

#	Article	IF	CITATIONS
73	Calculating the Protonation States of Proteins and Small Molecules: Implications to Ligand-Receptor Interactions. Current Computer-Aided Drug Design, 2008, 4, 169-179.	1.2	24
74	Combining Ligand- and Structure-Based Methods in Drug Design Projects. Current Computer-Aided Drug Design, 2008, 4, 250-258.	1.2	27
75	Screening Outside the Catalytic Site: Inhibition of Macromolecular Interactions Through Structure-Based Virtual Ligand Screening Experiments. The Open Biochemistry Journal, 2008, 2, 29-37.	0.5	17
76	Free Resources to Assist Structure-Based Virtual Ligand Screening Experiments. Current Protein and Peptide Science, 2007, 8, 381-411.	1.4	104
77	Frog: a FRee Online druG 3D conformation generator. Nucleic Acids Research, 2007, 35, W568-W572.	14.5	86
78	Design of protein–membrane interaction inhibitors by virtual ligand screening, proof of concept with the C2 domain of factor V. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 12697-12702.	7.1	50
79	MED-SuMoLig:  A New Ligand-Based Screening Tool for Efficient Scaffold Hopping. Journal of Chemical Information and Modeling, 2007, 47, 1097-1110.	5.4	34
80	Protein Structure Analysis Online. Current Protocols in Protein Science, 2007, 50, Unit 2.13.	2.8	1
81	Structure-based virtual ligand screening with LigandFit: Pose prediction and enrichment of compound collections. Proteins: Structure, Function and Bioinformatics, 2007, 68, 712-725.	2.6	45
82	Reduced phosphatase activity of SHPâ€2 in LEOPARD syndrome: Consequences for PI3K binding on Gab1. FEBS Letters, 2006, 580, 2477-2482.	2.8	91
83	FAF-Drugs: free ADME/tox filtering of compound collections. Nucleic Acids Research, 2006, 34, W738-W744.	14.5	115
84	Receptor-Based Computational Screening of Compound Databases: The Main Docking-Scoring Engines. Current Protein and Peptide Science, 2006, 7, 369-393.	1.4	47
85	Noonan syndrome type I with <i>PTPN11</i> 3 bp deletion: Structure–function implications. Proteins: Structure, Function and Bioinformatics, 2005, 58, 7-13.	2.6	15
86	Design, synthesis, and biological evaluation of novel naphthoquinone derivatives with CDC25 phosphatase inhibitory activity. Bioorganic and Medicinal Chemistry, 2005, 13, 4871-4879.	3.0	51
87	Fast Structure-Based Virtual Ligand Screening Combining FRED, DOCK, and Surflex. Journal of Medicinal Chemistry, 2005, 48, 6012-6022.	6.4	106
88	A critical role for Gly25 in the B chain of human thrombin. Journal of Thrombosis and Haemostasis, 2005, 3, 139-145.	3.8	9
89	Molecular models of the procoagulant Factor VIIIa-Factor IXa complex. Journal of Thrombosis and Haemostasis, 2005, 3, 2044-2056.	3.8	31
90	PCE: web tools to compute protein continuum electrostatics. Nucleic Acids Research, 2005, 33, W372-W375.	14.5	51

MARIA M MITEVA

#	Article	IF	CITATIONS
91	Theoretical and Experimental Study of the D2194G Mutation in the C2 Domain of Coagulation Factor V. Biophysical Journal, 2004, 86, 488-498.	0.5	18
92	pH-dependent stability of sperm whale myoglobin in water-guanidine hydrochloride solutions. European Biophysics Journal, 2003, 31, 617-625.	2.2	9
93	Factor V New Brunswick: Ala221Val associated with FV deficiency reproduced in vitro and functionally characterized. Blood, 2003, 102, 1316-1322.	1.4	31
94	Spectrophotometric titration of ionisable groups in proteins: a theoretical study. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2000, 56, 2033-2041.	3.9	0
95	Molecular electroporation: a unifying concept for the description of membrane pore formation by antibacterial peptides, exemplified with NKâ€lysin. FEBS Letters, 1999, 462, 155-158.	2.8	103
96	Numerical simulation of aldolase tetramer stability. European Biophysics Journal, 1998, 28, 67-73.	2.2	4
97	Multiply-Protonated Protein Ions in the Gas Phase:Â Calculation of the Electrostatic Interactions between Charged Sites. Journal of Physical Chemistry B, 1997, 101, 9645-9650.	2.6	36
98	Local electrostatic potentials in pyridoxal phosphate labelled horse heart cytochrome c. Journal of Photochemistry and Photobiology B: Biology, 1997, 37, 74-83.	3.8	9
99	Prediction and structural analysis of the enthalpy of ionization of proteins. Thermochimica Acta, 1997, 291, 141-153.	2.7	1
100	Characterization of pyridoxal phosphate as an optical label for measuring electrostatic potentials in proteins. Journal of Photochemistry and Photobiology B: Biology, 1996, 32, 71-79.	3.8	6