Cristiano ScottÃ;

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9068571/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Isolation and freezing of human peripheral blood mononuclear cells from pregnant patients. STAR Protocols, 2022, 3, 101204.	1.2	2
2	Treg cell therapy: How cell heterogeneity can make the difference. European Journal of Immunology, 2021, 51, 39-55.	2.9	44
3	Feasibility, long-term safety, and immune monitoring of regulatory T cell therapy in living donor kidney transplant recipients. American Journal of Transplantation, 2021, 21, 1603-1611.	4.7	79
4	Spatiotemporal in vivo tracking of polyclonal human regulatory T cells (Tregs) reveals a role for innate immune cells in Treg transplant recruitment. Molecular Therapy - Methods and Clinical Development, 2021, 20, 324-336.	4.1	16
5	PD-L1 signaling on human memory CD4+ T cells induces a regulatory phenotype. PLoS Biology, 2021, 19, e3001199.	5.6	32
6	lsolation and expansion of thymusâ€derived regulatory T cells for use in pediatric heart transplant patients. European Journal of Immunology, 2021, 51, 2086-2092.	2.9	6
7	Chimeric antigen receptorâ€modified human regulatory T cells that constitutively express ILâ€10 maintain their phenotype and are potently suppressive. European Journal of Immunology, 2021, 51, 2522-2530.	2.9	15
8	Regulatory T Cells in Pregnancy Adverse Outcomes: A Systematic Review and Meta-Analysis. Frontiers in Immunology, 2021, 12, 737862.	4.8	18
9	Potential Application of T-Follicular Regulatory Cell Therapy in Transplantation. Frontiers in Immunology, 2020, 11, 612848.	4.8	10
10	Regulatory cell therapy in kidney transplantation (The ONE Study): a harmonised design and analysis of seven non-randomised, single-arm, phase 1/2A trials. Lancet, The, 2020, 395, 1627-1639.	13.7	266
11	Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition). European Journal of Immunology, 2019, 49, 1457-1973.	2.9	766
12	Correction of Defective T-Regulatory Cells From Patients With Crohn's Disease by ExÂVivo Ligation of Retinoic Acid Receptor-α. Gastroenterology, 2019, 156, 1775-1787.	1.3	40
13	Getting to the Heart of the Matter: The Role of Regulatory T-Cells (Tregs) in Cardiovascular Disease (CVD) and Atherosclerosis. Frontiers in Immunology, 2019, 10, 2795.	4.8	53
14	A Rapamycin-Based GMP-Compatible Process for the Isolation and Expansion of Regulatory T Cells for Clinical Trials. Molecular Therapy - Methods and Clinical Development, 2018, 8, 198-209.	4.1	96
15	OTU-005â€Targeting expanded gut homing effector T cell lineages in GI-GVHD: a new therapeutic paradigm. , 2018, , .		0
16	PWE-022â€Gut-homing TH17 cells are selectively targeted by vedolizumab and may predict clinical response in IBD. , 2018, , .		0
17	Human retinoic acid–regulated CD161+ regulatory T cells support wound repair in intestinal mucosa. Nature Immunology, 2018, 19, 1403-1414.	14.5	86
18	Cell Therapy in Organ Transplantation: Our Experience on the Clinical Translation of Regulatory T Cells. Frontiers in Immunology, 2018, 9, 354.	4.8	55

CRISTIANO SCOTTÃI

#	Article	IF	CITATIONS
19	Expanded Regulatory T Cells Induce Alternatively Activated Monocytes With a Reduced Capacity to Expand T Helper-17 Cells. Frontiers in Immunology, 2018, 9, 1625.	4.8	55
20	Invariant natural killer T cells treated with rapamycin or transforming growth factor-Î ² acquire a regulatory function and suppress T effector lymphocytes. Cellular and Molecular Immunology, 2017, 14, 392-394.	10.5	3
21	Guidelines for the use of flow cytometry and cell sorting in immunological studies [*] . European Journal of Immunology, 2017, 47, 1584-1797.	2.9	505
22	Developing in vitro expanded CD45RA ⁺ regulatory T cells as an adoptive cell therapy for Crohn's disease. Gut, 2016, 65, 584-594.	12.1	163
23	Impact of immunosuppressive drugs on the therapeutic efficacy of ex vivo expanded human regulatory T cells. Haematologica, 2016, 101, 91-100.	3.5	64
24	Regulatory T Cells: Serious Contenders in the Promise for Immunological Tolerance in Transplantation. Frontiers in Immunology, 2015, 6, 438.	4.8	108
25	Regulatory T-Cell Therapy in the Induction of Transplant Tolerance. Transplantation, 2014, 98, 370-379.	1.0	70
26	<scp>CD</scp> 161 expression characterizes a subpopulation of human regulatory <scp>T</scp> cells that produces <scp>IL</scp> â€17 in a <scp>STAT</scp> 3â€dependent manner. European Journal of Immunology, 2013, 43, 2043-2054.	2.9	114
27	Su1266 In Vitro Generated Regulatory T Cells From Blood Suppress Mucosal Effector T Cells in Crohn's Disease Patients. Gastroenterology, 2013, 144, S-443.	1.3	0
28	272 In Vitro Generated Regulatory T Cells From Crohn's Disease Patients' Blood Home to Inflamed Human Small Bowel In Vivo. Gastroenterology, 2013, 144, S-60.	1.3	0
29	Comparison of Regulatory T Cells in Hemodialysis Patients and Healthy Controls. Clinical Journal of the American Society of Nephrology: CJASN, 2013, 8, 1396-1405.	4.5	77
30	Role of IL28B Gene Polymorphism and Cell-Mediated Immunity in Spontaneous Resolution of Acute Hepatitis C. Clinical Infectious Diseases, 2013, 57, 803-811.	5.8	10
31	Differential effects of rapamycin and retinoic acid on expansion, stability and suppressive qualities of human CD4+CD25+FOXP3+ T regulatory cell subpopulations. Haematologica, 2013, 98, 1291-1299.	3.5	127
32	Thymic Versus Induced Regulatory T Cells – Who Regulates the Regulators?. Frontiers in Immunology, 2013, 4, 169.	4.8	74
33	A rapid diagnostic test for human regulatory T-cell function to enable regulatory T-cell therapy. Blood, 2012, 119, e57-e66.	1.4	74
34	Relative Resistance of Human CD4+ Memory T Cells to Suppression by CD4+CD25+ Regulatory T Cells. American Journal of Transplantation, 2011, 11, 1734-1742.	4.7	34
35	CD28 costimulation regulates FOXP3 in a RelA/NFâ€₽Bâ€dependent mechanism. European Journal of Immunology, 2011, 41, 503-513.	2.9	30
36	Cell therapy to promote transplantation tolerance: a winning strategy?. Immunotherapy, 2011, 3, 28-31.	2.0	17

CRISTIANO SCOTTÃ:

#	Article	IF	CITATIONS
37	Impact of viral selected mutations on T cell mediated immunity in chronically evolving and self limiting acute HCV infection. Virology, 2009, 386, 398-406.	2.4	10
38	Influence of specific CD4+ T cells and antibodies on evolution of hypervariable region 1 during acute HCV infection. Journal of Hepatology, 2008, 48, 216-228.	3.7	9
39	FOXP3 Induced by CD28/B7 Interaction Regulates CD25 and Anergic Phenotype in Human CD4+CD25â^' T Lymphocytes. Journal of Immunology, 2008, 181, 1025-1033.	0.8	22
40	Positive selection of cytotoxic T lymphocyte escape variants during acute hepatitis C virus infection. European Journal of Immunology, 2005, 35, 2627-2637.	2.9	36
41	Hypervariable region 1 variant acting as TCR antagonist affects hepatitis C virus-specific CD4+T cell repertoire by favoring CD95-mediated apoptosis. Journal of Leukocyte Biology, 2005, 78, 372-382.	3.3	5
42	Echinococcus granulosus-specific T-cell lines derived from patients at various clinical stages of cystic echinococcosis. Parasite Immunology, 2004, 26, 45-52.	1.5	80
43	Antibody-selected mimics of hepatitis C virus hypervariable region 1 activate both primary and memory Th lymphocytes. Hepatology, 2003, 38, 653-663.	7.3	10
44	Both Maturation and Survival of Human Dendritic Cells are Impaired in the Presence of Anergic/Suppressor T Cells. Clinical and Developmental Immunology, 2003, 10, 61-65.	3.3	3
45	Human Anergic CD4+ T Cells Can Act as Suppressor Cells by Affecting Autologous Dendritic Cell Conditioning and Survival. Journal of Immunology, 2002, 168, 1060-1068.	0.8	45
46	High Prevalence of Hypervariable Region 1-Specific and -Cross-Reactive CD4+ T Cells in HCV-Infected Individuals Responsive to IFN-α Treatment. Virology, 2000, 269, 313-324.	2.4	21