Dino Di Carlo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9068531/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Scalable Fabrication and Use of 3D Structured Microparticles Spatially Functionalized with Biomolecules. ACS Nano, 2022, 16, 38-49.	14.6	22
2	Sorting single-cell microcarriers using commercial flow cytometers. SLAS Technology, 2022, 27, 150-159.	1.9	18
3	High-throughput selection of cells based on accumulated growth and division using PicoShell particles. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	12
4	IL-2 secretion-based sorting of single T cells using high-throughput microfluidic on-cell cytokine capture. Lab on A Chip, 2022, 22, 1576-1583.	6.0	16
5	A Readily Scalable, Clinically Demonstrated, Antibiofouling Zwitterionic Surface Treatment for Implantable Medical Devices. Advanced Materials, 2022, 34, e2200254.	21.0	18
6	Stimulation of the hepatoportal nerve plexus with focused ultrasound restores glucose homoeostasis in diabetic mice, rats and swine. Nature Biomedical Engineering, 2022, 6, 683-705.	22.5	28
7	Suspendable Hydrogel Nanovials for Massively Parallel Single-Cell Functional Analysis and Sorting. ACS Nano, 2022, 16, 7242-7257.	14.6	35
8	Best practices for reporting throughput in biomedical research. Nature Methods, 2022, 19, 633-634.	19.0	9
9	Interdisciplinarity and mechanobiology. IScience, 2022, 25, 104187.	4.1	3
10	Surface energy minimizing configurations for axisymmetric microparticles. Journal of Engineering Mathematics, 2022, 134, 1.	1.2	2
11	Activating an adaptive immune response from a hydrogel scaffold imparts regenerative wound healing. Nature Materials, 2021, 20, 560-569.	27.5	260
12	A review of biosensor technologies for blood biomarkers toward monitoring cardiovascular diseases at the point-of-care. Biosensors and Bioelectronics, 2021, 171, 112621.	10.1	78
13	Engineering Design of Concentric Amphiphilic Microparticles for Spontaneous Formation of Picoliter to Nanoliter Droplet Volumes. Analytical Chemistry, 2021, 93, 2317-2326.	6.5	18
14	Counting of enzymatically amplified affinity reactions in hydrogel particle-templated drops. Lab on A Chip, 2021, 21, 3438-3448.	6.0	14
15	Injectable, macroporous scaffolds for delivery of therapeutic genes to the injured spinal cord. APL Bioengineering, 2021, 5, 016104.	6.2	19
16	Singleâ€Domain Multiferroic Arrayâ€Addressable Terfenolâ€D (SMArT) Micromagnets for Programmable Singleâ€Cell Capture and Release. Advanced Materials, 2021, 33, e2006651.	21.0	20
17	Development and validation of a cellular host response test as an early diagnostic for sepsis. PLoS ONE, 2021, 16, e0246980.	2.5	22
18	Singleâ€Cell Manipulation: Singleâ€Domain Multiferroic Arrayâ€Addressable Terfenolâ€D (SMArT) Micromagnets for Programmable Singleâ€Cell Capture and Release (Adv. Mater. 20/2021). Advanced Materials, 2021, 33, 2170159.	21.0	2

#	Article	IF	CITATIONS
19	Statistical energy minimization theory for systems of drop-carrier particles. Physical Review E, 2021, 104, 015109.	2.1	3
20	Recent Progress in Lyme Disease and Remaining Challenges. Frontiers in Medicine, 2021, 8, 666554.	2.6	55
21	The Mechanobiology of Endothelial-to-Mesenchymal Transition in Cardiovascular Disease. Frontiers in Physiology, 2021, 12, 734215.	2.8	23
22	Methylation-Sensitive Loop-Mediated Isothermal Amplification (LAMP): Nucleic Acid Methylation Detection through LAMP with Mobile Fluorescence Readout. ACS Sensors, 2021, 6, 3242-3252.	7.8	19
23	Optimized design of obstacle sequences for microfluidic mixing in an inertial regime. Lab on A Chip, 2021, 21, 3910-3923.	6.0	21
24	Selective and Improved Photoannealing of Microporous Annealed Particle (MAP) Scaffolds. ACS Biomaterials Science and Engineering, 2021, 7, 422-427.	5.2	14
25	Rapid Detection and Inhibition of SARS oVâ€2â€Spike Mutationâ€Mediated Microthrombosis. Advanced Science, 2021, 8, e2103266.	11.2	11
26	Fractal LAMP: Label-Free Analysis of Fractal Precipitate for Digital Loop-Mediated Isothermal Nucleic Acid Amplification. ACS Sensors, 2020, 5, 385-394.	7.8	27
27	Effects of Flowâ€Induced Microfluidic Chip Wall Deformation on Imaging Flow Cytometry. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2020, 97, 909-920.	1.5	20
28	Point-of-Care Serodiagnostic Test for Early-Stage Lyme Disease Using a Multiplexed Paper-Based Immunoassay and Machine Learning. ACS Nano, 2020, 14, 229-240.	14.6	66
29	Natural Perspiration Sampling and in Situ Electrochemical Analysis with Hydrogel Micropatches for User-Identifiable and Wireless Chemo/Biosensing. ACS Sensors, 2020, 5, 93-102.	7.8	69
30	Detection of EGFR Mutations in cfDNA and CTCs, and Comparison to Tumor Tissue in Non-Small-Cell-Lung-Cancer (NSCLC) Patients. Frontiers in Oncology, 2020, 10, 572895.	2.8	35
31	Raman image-activated cell sorting. Nature Communications, 2020, 11, 3452.	12.8	116
32	Single Cell Mechanotype and Associated Molecular Changes in Urothelial Cell Transformation and Progression. Frontiers in Cell and Developmental Biology, 2020, 8, 601376.	3.7	10
33	In situ forming microporous gelatin methacryloyl hydrogel scaffolds from thermostable microgels for tissue engineering. Bioengineering and Translational Medicine, 2020, 5, e10180.	7.1	33
34	Drug Delivery: Injectable Drugâ€Releasing Microporous Annealed Particle Scaffolds for Treating Myocardial Infarction (Adv. Funct. Mater. 43/2020). Advanced Functional Materials, 2020, 30, 2070289.	14.9	2
35	Injectable Drugâ€Releasing Microporous Annealed Particle Scaffolds for Treating Myocardial Infarction. Advanced Functional Materials, 2020, 30, 2004307.	14.9	57
36	Fabrication of 3D concentric amphiphilic microparticles to form uniform nanoliter reaction volumes for amplified affinity assays. Lab on A Chip, 2020, 20, 3503-3514.	6.0	27

#	Article	IF	CITATIONS
37	Monodisperse drops templated by 3D-structured microparticles. Science Advances, 2020, 6, .	10.3	28
38	Deep learning-enabled point-of-care sensing using multiplexed paper-based sensors. Npj Digital Medicine, 2020, 3, 66.	10.9	65
39	Sequentially addressable dielectrophoretic array for high-throughput sorting of large-volume biological compartments. Science Advances, 2020, 6, eaba6712.	10.3	56
40	Microfluidicâ€Based Approaches in Targeted Cell/Particle Separation Based on Physical Properties: Fundamentals and Applications. Small, 2020, 16, e2000171.	10.0	121
41	Hybrid Integrated Photomedical Devices for Wearable Vital Sign Tracking. ACS Sensors, 2020, 5, 1582-1588.	7.8	14
42	A ferrobotic system for automated microfluidic logistics. Science Robotics, 2020, 5, .	17.6	58
43	Shape design for stabilizing microparticles in inertial microfluidic flows. Journal of Fluid Mechanics, 2020, 886, .	3.4	4
44	Spectro-temporal encoded multiphoton microscopy and fluorescence lifetime imaging at kilohertz frame-rates. Nature Communications, 2020, 11, 2062.	12.8	41
45	A comparison of microfluidic methods for high-throughput cell deformability measurements. Nature Methods, 2020, 17, 587-593.	19.0	148
46	Peripheral Focused Ultrasound Neuromodulation (pFUS). Journal of Neuroscience Methods, 2020, 341, 108721.	2.5	20
47	Enhanced In Vivo Delivery of Stem Cells using Microporous Annealed Particle Scaffolds. Small, 2019, 15, e1903147.	10.0	71
48	Microengineered Emulsion-to-Powder Technology for the High-Fidelity Preservation of Molecular, Colloidal, and Bulk Properties of Hydrogel Suspensions. ACS Applied Polymer Materials, 2019, 1, 1935-1941.	4.4	5
49	Nano and Microtechnologies for the Study of Magnetotactic Bacteria. Advanced Functional Materials, 2019, 29, 1904178.	14.9	11
50	Modular microporous hydrogels formed from microgel beads with orthogonal thermo-chemical responsivity: Microfluidic fabrication and characterization. MethodsX, 2019, 6, 1747-1752.	1.6	23
51	A practical guide to intelligent image-activated cell sorting. Nature Protocols, 2019, 14, 2370-2415.	12.0	71
52	Capturing magnetic bead-based arrays using perpendicular magnetic anisotropy. Applied Physics Letters, 2019, 115, 082402.	3.3	12
53	FlowSculpt: software for efficient design of inertial flow sculpting devices. Lab on A Chip, 2019, 19, 3277-3291.	6.0	9
54	Computational cytometer based on magnetically modulated coherent imaging and deep learning. Light: Science and Applications, 2019, 8, 91.	16.6	21

#	Article	IF	CITATIONS
55	Paper-based multiplexed vertical flow assay for point-of-care testing. Lab on A Chip, 2019, 19, 1027-1034.	6.0	53
56	Hydrogels: Scalable Highâ€Throughput Production of Modular Microgels for In Situ Assembly of Microporous Tissue Scaffolds (Adv. Funct. Mater. 25/2019). Advanced Functional Materials, 2019, 29, 1970174.	14.9	4
57	Nanoplasmonic swarm biosensing using single nanoparticle colorimetry. Biosensors and Bioelectronics, 2019, 132, 162-170.	10.1	24
58	Technologies for the Directed Evolution of Cell Therapies. SLAS Technology, 2019, 24, 359-372.	1.9	8
59	Scalable Highâ€Throughput Production of Modular Microgels for In Situ Assembly of Microporous Tissue Scaffolds. Advanced Functional Materials, 2019, 29, 1900071.	14.9	122
60	Microfluidic-enabled bottom-up hydrogels from annealable naturally-derived protein microbeads. Biomaterials, 2019, 192, 560-568.	11.4	116
61	Nonlinear Microfluidics. Analytical Chemistry, 2019, 91, 296-314.	6.5	137
62	Abstract 409: Regulation of Cardiomyocyte Maturation by an RNA Splicing Regulator Rbfox1. Circulation Research, 2019, 125, .	4.5	1
63	Comment on "Ghost cytometry― Science, 2019, 364, .	12.6	6
64	Capturing magnetic bead-based arrays using perpendicular magnetic anisotropy. Applied Physics Letters, 2019, 115, .	3.3	1
65	Rapid Biophysical Analysis of Host Immune Cell Variations Associated with Sepsis. American Journal of Respiratory and Critical Care Medicine, 2018, 198, 280-282.	5.6	23
66	Elastomeric sensor surfaces for high-throughput single-cell force cytometry. Nature Biomedical Engineering, 2018, 2, 124-137.	22.5	47
67	Separation of cancer cells using vortical microfluidic flows. Biomicrofluidics, 2018, 12, 014112.	2.4	41
68	Active Control of Inertial Focusing Positions and Particle Separations Enabled by Velocity Profile Tuning with Coflow Systems. Analytical Chemistry, 2018, 90, 2902-2911.	6.5	32
69	Fast and Label-Free Isolation of Circulating Tumor Cells from Blood: From a Research Microfluidic Platform to an Automated Fluidic Instrument, VTX-1 Liquid Biopsy System. SLAS Technology, 2018, 23, 16-29.	1.9	40
70	Evaluation of PD-L1 expression on vortex-isolated circulating tumor cells in metastatic lung cancer. Scientific Reports, 2018, 8, 2592.	3.3	81
71	Continuous and Quantitative Purification of T-Cell Subsets for Cell Therapy Manufacturing Using Magnetic Ratcheting Cytometry. SLAS Technology, 2018, 23, 326-337.	1.9	12
72	Tuning Molecular Interactions for Highly Reproducible and Efficient Formamidinium Perovskite Solar Cells via Adduct Approach. Journal of the American Chemical Society, 2018, 140, 6317-6324.	13.7	338

#	Article	IF	CITATIONS
73	Optofluidic time-stretch quantitative phase microscopy. Methods, 2018, 136, 116-125.	3.8	35
74	Enzyme-Free Nucleic Acid Amplification Assay Using a Cellphone-Based Well Plate Fluorescence Reader. Analytical Chemistry, 2018, 90, 690-695.	6.5	27
75	A Gelatin Microdroplet Platform for Highâ€Throughput Sorting of Hyperproducing Singleâ€Cellâ€Derived Microalgal Clones. Small, 2018, 14, e1803315.	10.0	52
76	Cytocompatible magnetostrictive microstructures for nano- and microparticle manipulation on linear strain response piezoelectrics. Multifunctional Materials, 2018, 1, 014004.	3.7	6
77	Functional profiling of circulating tumor cells with an integrated vortex capture and single-cell protease activity assay. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9986-9991.	7.1	105
78	Obesity increases airway smooth muscle responses to contractile agonists. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 315, L673-L681.	2.9	45
79	High-throughput imaging flow cytometry by optofluidic time-stretch microscopy. Nature Protocols, 2018, 13, 1603-1631.	12.0	112
80	High-Throughput Microfluidic Sorting of Live Magnetotactic Bacteria. Applied and Environmental Microbiology, 2018, 84, .	3.1	12
81	uFlow: software for rational engineering of secondary flows in inertial microfluidic devices. Microfluidics and Nanofluidics, 2018, 22, 1.	2.2	10
82	Scanning two-photon continuous flow lithography for synthesis of high-resolution 3D microparticles. Optics Express, 2018, 26, 13543.	3.4	26
83	Size-based sorting of hydrogel droplets using inertial microfluidics. Lab on A Chip, 2018, 18, 2575-2582.	6.0	60
84	Ferrodrop Dose-Optimized Digital Quantification of Biomolecules in Low-Volume Samples. Analytical Chemistry, 2018, 90, 8881-8888.	6.5	7
85	Shaped 3D microcarriers for adherent cell culture and analysis. Microsystems and Nanoengineering, 2018, 4, 21.	7.0	43
86	Single-Cell Analysis of Morphological and Metabolic Heterogeneity in <i>Euglena gracilis</i> by Fluorescence-Imaging Flow Cytometry. Analytical Chemistry, 2018, 90, 11280-11289.	6.5	18
87	Intelligent Image-Activated Cell Sorting. Cell, 2018, 175, 266-276.e13.	28.9	395
88	A 3D Magnetic Hyaluronic Acid Hydrogel for Magnetomechanical Neuromodulation of Primary Dorsal Root Ganglion Neurons. Advanced Materials, 2018, 30, e1800927.	21.0	78
89	Highly Stable and Sensitive Nucleic Acid Amplification and Cell-Phone-Based Readout. ACS Nano, 2017, 11, 2934-2943.	14.6	101
90	Modulating motility of intracellular vesicles in cortical neurons with nanomagnetic forces on-chip. Lab on A Chip, 2017, 17, 842-854.	6.0	14

#	Article	IF	CITATIONS
91	Small but Perfectly Formed? Successes, Challenges, and Opportunities for Microfluidics in the Chemical and Biological Sciences. CheM, 2017, 2, 201-223.	11.7	278
92	Magnetic Nanoparticle-Based Mechanical Stimulation for Restoration of Mechano-Sensitive Ion Channel Equilibrium in Neural Networks. Nano Letters, 2017, 17, 886-892.	9.1	70
93	Label-free isolation of prostate circulating tumor cells using Vortex microfluidic technology. Npj Precision Oncology, 2017, 1, 15.	5.4	72
94	A Rapid Capillary-Pressure Driven Micro-Channel to Demonstrate Newtonian Fluid Behavior of Zebrafish Blood at High Shear Rates. Scientific Reports, 2017, 7, 1980.	3.3	24
95	Effect of reservoir geometry on vortex trapping of cancer cells. Microfluidics and Nanofluidics, 2017, 21, 1.	2.2	22
96	High-throughput physical phenotyping of cell differentiation. Microsystems and Nanoengineering, 2017, 3, 17013.	7.0	57
97	Biophysical isolation and identification of circulating tumor cells. Lab on A Chip, 2017, 17, 1452-1461.	6.0	83
98	Inertial flow of a dilute suspension over cavities in a microchannel. Journal of Fluid Mechanics, 2017, 811, 436-467.	3.4	57
99	Probing Cell Adhesion Profiles with a Microscale Adhesive Choice Assay. Biophysical Journal, 2017, 113, 1858-1867.	0.5	5
100	Microscale Laminar Vortices for High-Purity Extraction and Release of Circulating Tumor Cells. Methods in Molecular Biology, 2017, 1634, 65-79.	0.9	1
101	Shape-based separation of microalga Euglena gracilis using inertial microfluidics. Scientific Reports, 2017, 7, 10802.	3.3	70
102	Gα ₁₂ facilitates shortening in human airway smooth muscle by modulating phosphoinositide 3â€kinaseâ€mediated activation in a RhoAâ€dependent manner. British Journal of Pharmacology, 2017, 174, 4383-4395.	5.4	28
103	Identification of a Human Airway Epithelial Cell Subpopulation with Altered Biophysical, Molecular, and Metastatic Properties. Cancer Prevention Research, 2017, 10, 514-524.	1.5	9
104	Particle focusing by 3D inertial microfluidics. Microsystems and Nanoengineering, 2017, 3, 17027.	7.0	76
105	Microfluidic Cell Sorting and Separation Technology. Microsystems and Nanosystems, 2017, , 1-14.	0.1	10
106	Size-tunable microvortex capture of rare cells. Lab on A Chip, 2017, 17, 2542-2549.	6.0	74
107	Remote Neural Stimulation Using Magnetic Nanoparticles. Current Medicinal Chemistry, 2017, 24, 537-548.	2.4	17
108	Classification of large circulating tumor cells isolated with ultra-high throughput microfluidic Vortex technology. Oncotarget, 2016, 7, 12748-12760.	1.8	151

#	Article	IF	CITATIONS
109	The Age of Cortical Neural Networks Affects Their Interactions with Magnetic Nanoparticles. Small, 2016, 12, 3559-3567.	10.0	18
110	Quantitative Magnetic Separation of Particles and Cells Using Gradient Magnetic Ratcheting. Small, 2016, 12, 1891-1899.	10.0	41
111	Optimization of micropillar sequences for fluid flow sculpting. Physics of Fluids, 2016, 28, .	4.0	20
112	High-throughput and automated diagnosis of antimicrobial resistance using a cost-effective cellphone-based micro-plate reader. Scientific Reports, 2016, 6, 39203.	3.3	32
113	Multiparameter mechanical and morphometric screening of cells. Scientific Reports, 2016, 6, 37863.	3.3	44
114	Preferred interparticle spacings in trains of particles in inertial microchannel flows. Journal of Fluid Mechanics, 2016, 786, .	3.4	65
115	Micro- and nano-technologies to probe the mechano-biology of the brain. Lab on A Chip, 2016, 16, 1962-1977.	6.0	20
116	Inertial focusing of ellipsoidal Euglena gracilis cells in a stepped microchannel. Lab on A Chip, 2016, 16, 4458-4465.	6.0	43
117	Homogeneous Entropy-Driven Amplified Detection of Biomolecular Interactions. ACS Nano, 2016, 10, 7467-7475.	14.6	54
118	High-throughput label-free image cytometry and image-based classification of live Euglena gracilis. Biomedical Optics Express, 2016, 7, 2703.	2.9	34
119	Current Status of Microfluidics-Assisted Cytology: The Application in Molecular Cytology. Essentials in Cytopathology Series, 2016, , 261-283.	0.1	0
120	Particle Hydrogels Based on Hyaluronic Acid Building Blocks. ACS Biomaterials Science and Engineering, 2016, 2, 2034-2041.	5.2	112
121	Inhibition of PI3K promotes dilation of human small airways in a rho kinaseâ€dependent manner. British Journal of Pharmacology, 2016, 173, 2726-2738.	5.4	34
122	Label-free enumeration, collection and downstream cytological and cytogenetic analysis of circulating tumor cells. Scientific Reports, 2016, 6, 35474.	3.3	46
123	Simplified three-dimensional tissue clearing and incorporation of colorimetric phenotyping. Scientific Reports, 2016, 6, 30736.	3.3	38
124	Drop formation using ferrofluids driven magnetically in a step emulsification device. Lab on A Chip, 2016, 16, 2474-2480.	6.0	48
125	Direct measurement of particle inertial migration in rectangular microchannels. Lab on A Chip, 2016, 16, 2840-2850.	6.0	32
126	Inertial focusing in non-rectangular cross-section microchannels and manipulation of accessible focusing positions. Lab on A Chip, 2016, 16, 992-1001.	6.0	107

#	Article	IF	CITATIONS
127	Induction of Calcium Influx in Cortical Neural Networks by Nanomagnetic Forces. ACS Nano, 2016, 10, 2331-2341.	14.6	88
128	High-throughput time-stretch microscopy with morphological and chemical specificity. Proceedings of SPIE, 2016, , .	0.8	1
129	High efficiency vortex trapping of circulating tumor cells. Biomicrofluidics, 2015, 9, 064116.	2.4	60
130	Rapid Softwareâ€Based Design and Optical Transient Liquid Molding of Microparticles. Advanced Materials, 2015, 27, 7970-7978.	21.0	51
131	On the Application of Inertial Microfluidics for the Size-Based Separation of Polydisperse Cementitious Particulates. Frontiers in Materials, 2015, 2, .	2.4	5
132	Research highlights: aptamers on a chip. Lab on A Chip, 2015, 15, 1630-1633.	6.0	5
133	Accelerated wound healing by injectable microporous gel scaffolds assembled fromÂannealed building blocks. Nature Materials, 2015, 14, 737-744.	27.5	698
134	High-throughput optofluidic particle profiling with morphological and chemical specificity. Optics Letters, 2015, 40, 4803.	3.3	28
135	Inertial microfluidic programming of microparticle-laden flows for solution transfer around cells and particles. Microfluidics and Nanofluidics, 2015, 19, 53-65.	2.2	40
136	Cellphone-Based Hand-Held Microplate Reader for Point-of-Care Testing of Enzyme-Linked Immunosorbent Assays. ACS Nano, 2015, 9, 7857-7866.	14.6	300
137	High-Throughput Assessment of Cellular Mechanical Properties. Annual Review of Biomedical Engineering, 2015, 17, 35-62.	12.3	166
138	Optofluidic fabrication for 3D-shaped particles. Nature Communications, 2015, 6, 6976.	12.8	101
139	Research highlights: surface-based microfluidic control. Lab on A Chip, 2015, 15, 3107-3110.	6.0	1
140	Research highlights: translating chips. Lab on A Chip, 2015, 15, 1984-1988.	6.0	5
141	Rapid inertial solution exchange for enrichment and flow cytometric detection of microvesicles. Biomicrofluidics, 2015, 9, 014112.	2.4	93
142	Engineering Cortical Neuron Polarity with Nanomagnets on a Chip. ACS Nano, 2015, 9, 3664-3676.	14.6	49
143	Research highlights: microfluidic-enabled single-cell epigenetics. Lab on A Chip, 2015, 15, 4109-4113.	6.0	5
144	Research highlights: enhancing whole genome amplification using compartmentalization. Lab on A Chip, 2015, 15, 4379-4382.	6.0	5

#	Article	IF	CITATIONS
145	Research highlights: microfluidically-fabricated materials. Lab on A Chip, 2015, 15, 3818-3821.	6.0	4
146	Research highlights: cell separation at the bench and beyond. Lab on A Chip, 2015, 15, 605-609.	6.0	7
147	Metallization and Biopatterning on Ultra-Flexible Substrates via Dextran Sacrificial Layers. PLoS ONE, 2014, 9, e106091.	2.5	25
148	Pulsed laser activated cell sorter (PLACS) for high-throughput fluorescent mammalian cell sorting. Proceedings of SPIE, 2014, , .	0.8	2
149	Advances in high-throughput single-cell microtechnologies. Current Opinion in Biotechnology, 2014, 25, 114-123.	6.6	86
150	Continuous-flow cytomorphological staining and analysis. Lab on A Chip, 2014, 14, 522-531.	6.0	34
151	Pulsed Laser Activated Cell Sorting with Three Dimensional Sheathless Inertial Focusing. Small, 2014, 10, 1746-1751.	10.0	66
152	Preparing Substrates Encoding Cell Patterning and Localized Intracellular Magnetic Particle Stimulus for High-Throughput Experimentation. Methods in Cell Biology, 2014, 120, 201-214.	1.1	2
153	Pulsed laser activated cell sorting with three dimensional sheathless inertial focusing. , 2014, , .		1
154	Research highlights: micro-engineered therapies. Lab on A Chip, 2014, 14, 4585-4589.	6.0	2
155	Real-time control of inertial focusing in microfluidics using dielectrophoresis (DEP). RSC Advances, 2014, 4, 62076-62085.	3.6	62
156	Research highlights: microfluidic point-of-care diagnostics. Lab on A Chip, 2014, 14, 1962.	6.0	25
157	Research highlights: printing the future of microfabrication. Lab on A Chip, 2014, 14, 1491.	6.0	64
158	Emerging investigators: new challenges spawn new innovations. Lab on A Chip, 2014, 14, 2599.	6.0	1
159	Research highlights: microfluidic single-cell analysis from nucleic acids to proteins to functions. Lab on A Chip, 2014, 14, 3663.	6.0	9
160	Mediating Millisecond Reaction Time around Particles and Cells. Analytical Chemistry, 2014, 86, 1502-1510.	6.5	24
161	Research highlights: microfluidics and magnets. Lab on A Chip, 2014, 14, 2882-2886.	6.0	12
162	Size-selective collection of circulating tumor cells using Vortex technology. Lab on A Chip, 2014, 14, 63-77.	6.0	457

#	Article	IF	CITATIONS
163	Research highlights: measuring and manipulating cell migration. Lab on A Chip, 2014, 14, 4117-4121.	6.0	3
164	Micropillar sequence designs for fundamental inertial flow transformations. Lab on A Chip, 2014, 14, 4197-4204.	6.0	37
165	Inertial microfluidic physics. Lab on A Chip, 2014, 14, 2739.	6.0	560
166	Sugar Additives Improve Signal Fidelity for Implementing Two-Phase Resorufin-Based Enzyme Immunoassays. Langmuir, 2014, 30, 6637-6643.	3.5	33
167	Automated single-cell motility analysis on a chip using lensfree microscopy. Scientific Reports, 2014, 4, 4717.	3.3	63
168	Fabricating Shaped Microfibers with Inertial Microfluidics. Advanced Materials, 2014, 26, 3712-3717.	21.0	57
169	Pinched-flow hydrodynamic stretching of single-cells. Lab on A Chip, 2013, 13, 3728.	6.0	124
170	Three Dimensional, Sheathless, and Highâ€Throughput Microparticle Inertial Focusing Through Geometryâ€Induced Secondary Flows. Small, 2013, 9, 685-690.	10.0	163
171	Ultrafast automated image cytometry for cancer detection. , 2013, 2013, 129-32.		1
172	A hardware accelerated approach for imaging flow cytometry. , 2013, , .		3
173	Electro-adaptive microfluidics for active tuning of channel geometry using polymer actuators. Microfluidics and Nanofluidics, 2013, 14, 345-358.	2.2	37
174	Microstructure-induced helical vortices allow single-stream and long-term inertial focusing. Lab on A Chip, 2013, 13, 2942.	6.0	90
175	Microfluidic sample preparation for diagnostic cytopathology. Lab on A Chip, 2013, 13, 1011.	6.0	84
176	Engineering fluid flow using sequenced microstructures. Nature Communications, 2013, 4, 1826.	12.8	143
177	Dielectric elastomer actuators for active microfluidic control. Proceedings of SPIE, 2013, , .	0.8	12
178	Quantitative Diagnosis of Malignant Pleural Effusions by Single-Cell Mechanophenotyping. Science Translational Medicine, 2013, 5, 212ra163.	12.4	227
179	Microfluidic Purification and Concentration of Malignant Pleural Effusions for Improved Molecular and Cytomorphological Diagnostics. PLoS ONE, 2013, 8, e78194.	2.5	35
180	Microfluidics: Three Dimensional, Sheathless, and Highâ€Throughput Microparticle Inertial Focusing Through Geometryâ€Induced Secondary Flows (Small 5/2013). Small, 2013, 9, 804-804.	10.0	1

#	Article	IF	CITATIONS
181	Microfluidics as a Promising Tool Toward Distributed Viral Detection. , 2013, , 311-340.		0
182	Label-Free Enrichment of Adrenal Cortical Progenitor Cells Using Inertial Microfluidics. PLoS ONE, 2012, 7, e46550.	2.5	48
183	Introduction: Why Analyze Single Cells?. Methods in Molecular Biology, 2012, 853, 1-10.	0.9	21
184	Hydrodynamic stretching of single cells for large population mechanical phenotyping. Proceedings of the United States of America, 2012, 109, 7630-7635.	7.1	669
185	A Mechanical Biomarker of Cell State in Medicine. Journal of the Association for Laboratory Automation, 2012, 17, 32-42.	2.8	188
186	Intrinsic particle-induced lateral transport in microchannels. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 11593-11598.	7.1	83
187	High-throughput single-microparticle imaging flow analyzer. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 11630-11635.	7.1	333
188	Inertial Microfluidics: Inertial Manipulation and Transfer of Microparticles Across Laminar Fluid Streams (Small 17/2012). Small, 2012, 8, 2765-2765.	10.0	1
189	Continuous Inertial Focusing and Separation of Particles by Shape. Physical Review X, 2012, 2, .	8.9	93
190	Inertial Manipulation and Transfer of Microparticles Across Laminar Fluid Streams. Small, 2012, 8, 2757-2764.	10.0	144
191	The effects of shear stress on isolated receptor–ligand interactions of Staphylococcus epidermidis and human plasma fibrinogen using molecularly patterned microfluidics. Lab on A Chip, 2011, 11, 883.	6.0	22
192	Deformability-based cell classification and enrichment using inertial microfluidics. Lab on A Chip, 2011, 11, 912.	6.0	486
193	Automated cellular sample preparation using a Centrifuge-on-a-Chip. Lab on A Chip, 2011, 11, 2827.	6.0	247
194	Rapid prototyping polymers for microfluidic devices and high pressure injections. Lab on A Chip, 2011, 11, 3752.	6.0	332
195	Nomarski serial time-encoded amplified microscopy for high-speed contrast-enhanced imaging of transparent media. Biomedical Optics Express, 2011, 2, 3387.	2.9	34
196	Sequential Array Cytometry: Multi-Parameter Imaging with a Single Fluorescent Channel. Annals of Biomedical Engineering, 2011, 39, 1328-1334.	2.5	10
197	Inertial focusing of non-spherical microparticles. Applied Physics Letters, 2011, 99, .	3.3	105
198	High-throughput size-based rare cell enrichment using microscale vortices. Biomicrofluidics, 2011, 5, 22206.	2.4	266

#	Article	IF	CITATIONS
199	Strategies for Implementing Hardware-Assisted High-Throughput Cellular Image Analysis. Journal of the Association for Laboratory Automation, 2011, 16, 422-430.	2.8	17
200	Label-free cell separation and sorting in microfluidic systems. Analytical and Bioanalytical Chemistry, 2010, 397, 3249-3267.	3.7	789
201	Continuous scalable blood filtration device using inertial microfluidics. Biotechnology and Bioengineering, 2010, 107, 302-311.	3.3	289
202	Dynamic self-assembly and control of microfluidic particle crystals. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 22413-22418.	7.1	193
203	Pulsed laser triggered high speed fluorescence activated microfluidic switch. , 2010, , .		2
204	Particle Focusing in Staged Inertial Microfluidic Devices for Flow Cytometry. Analytical Chemistry, 2010, 82, 3862-3867.	6.5	202
205	Sheathless inertial cell ordering for extreme throughput flow cytometry. Lab on A Chip, 2010, 10, 274-280.	6.0	324
206	Inertial microfluidics for flow cytometry. , 2010, , .		0
207	Particle Segregation and Dynamics in Confined Flows. Physical Review Letters, 2009, 102, 094503.	7.8	431
208	Differential inertial focusing of particles in curved low-aspect-ratio microchannels. New Journal of Physics, 2009, 11, 075025.	2.9	152
209	Particle Focusing Mechanisms in Curving Confined Flows. Analytical Chemistry, 2009, 81, 8459-8465.	6.5	211
210	Inertial microfluidics. Lab on A Chip, 2009, 9, 3038.	6.0	1,349
211	Microfluidic self-assembly of tumor spheroids for anticancer drug discovery. Biomedical Microdevices, 2008, 10, 197-202.	2.8	234
212	Equilibrium Separation and Filtration of Particles Using Differential Inertial Focusing. Analytical Chemistry, 2008, 80, 2204-2211.	6.5	354
213	Microvortex for focusing, guiding and sorting of particles. Lab on A Chip, 2008, 8, 2128.	6.0	117
214	Controlled encapsulation of single-cells into monodisperse picolitre drops. Lab on A Chip, 2008, 8, 1262.	6.0	444
215	Continuous inertial focusing, ordering, and separation of particles in microchannels. Proceedings of the United States of America, 2007, 104, 18892-18897.	7.1	1,408
216	Single-Cell Enzyme Concentrations, Kinetics, and Inhibition Analysis Using High-Density Hydrodynamic Cell Isolation Arrays. Analytical Chemistry, 2006, 78, 4925-4930.	6.5	406

#	Article	IF	CITATIONS
217	Dynamic Single-Cell Analysis for Quantitative Biology. Analytical Chemistry, 2006, 78, 7918-7925.	6.5	329
218	Dynamic single cell culture array. Lab on A Chip, 2006, 6, 1445.	6.0	651
219	On-chip cell lysis by local hydroxide generation. Lab on A Chip, 2005, 5, 171.	6.0	92
220	Reagentless mechanical cell lysis by nanoscale barbs in microchannels for sample preparation. Lab on A Chip, 2003, 3, 287.	6.0	224
221	Enhanced Velocity Gradients within Microfluidics for Cellular Manipulation. , 2002, , 799-801.		Ο
222	Simulations of near-field excitation and trapping for integrated near-field optical microfluidic devices. , 0, , .		2
223	Mechanical cell lysis results of a sample preparation module for functional genomics. , 0, , .		1
224	Detection of protein conformational changes with a nanogap biosensor. , 0, , .		6
225	Single Cell Analysis for Quantitative Systems Biology. , 0, , 135-160.		0
226	Blood screening using a time-stretch camera identifies cancer cells with record sensitivity. SPIE Newsroom, 0, , .	0.1	0