
## Satya Kumar Avula

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9068196/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Synthesis of 1H-1,2,3-triazole derivatives as new α-glucosidase inhibitors and their molecular docking studies. Bioorganic Chemistry, 2018, 81, 98-106.                                                                                                              | 4.1 | 75        |
| 2  | Sulfonic acid functionalized silica as an efficient heterogeneous recyclable catalyst for oneâ€pot<br>synthesis of 2â€substituted benziimidazoles. Journal of Heterocyclic Chemistry, 2008, 45, 1499-1502.                                                           | 2.6 | 30        |
| 3  | Incensfuran: isolation, X-ray crystal structure and absolute configuration by means of chiroptical studies in solution and solid state. RSC Advances, 2017, 7, 42357-42362.                                                                                          | 3.6 | 26        |
| 4  | Synthesis of novel (R)-4-fluorophenyl-1H-1,2,3-triazoles: A new class of α-glucosidase inhibitors.<br>Bioorganic Chemistry, 2019, 91, 103182.                                                                                                                        | 4.1 | 26        |
| 5  | A Facile Synthesis of 3-[(N-Alkylanilino)(aryl)methyl]indoles Using TCT¹. Synthesis, 2010, 2010, 914-916.                                                                                                                                                            | 2.3 | 19        |
| 6  | 5- epi -Incensole: synthesis, X-ray crystal structure and absolute configuration by means of ECD and VCD studies in solution and solid state. Tetrahedron: Asymmetry, 2016, 27, 829-833.                                                                             | 1.8 | 17        |
| 7  | New bioactive macrocyclic diterpenoids from Jatropha multifida. Bioorganic and Medicinal Chemistry<br>Letters, 2011, 21, 6808-6810.                                                                                                                                  | 2.2 | 16        |
| 8  | Edible Mushrooms as Novel Myco-Therapeutics: Effects on Lipid Level, Obesity and BMI. Journal of<br>Fungi (Basel, Switzerland), 2022, 8, 211.                                                                                                                        | 3.5 | 14        |
| 9  | Exploring Dose-Dependent Cytotoxicity Profile of Gracilaria edulis-Mediated Green Synthesized Silver<br>Nanoparticles against MDA-MB-231 Breast Carcinoma. Oxidative Medicine and Cellular Longevity, 2022,<br>2022, 1-15.                                           | 4.0 | 14        |
| 10 | Synthesis of New 1H-1,2,3-Triazole Analogs in Aqueous Medium via "Click―Chemistry: A Novel Class of<br>Potential Carbonic Anhydrase-II Inhibitors. Frontiers in Chemistry, 2021, 9, 642614.                                                                          | 3.6 | 13        |
| 11 | New synthetic 1H-1,2,3-triazole derivatives of 3-O-acetyl-Î <sup>2</sup> -boswellic acid and<br>3-O-acetyl-11-keto-Î <sup>2</sup> -boswellic acid from Boswellia sacra inhibit carbonic anhydrase II in vitro. Medicinal<br>Chemistry Research, 2021, 30, 1185-1198. | 2.4 | 12        |
| 12 | Exploring the Bioactive Potentials of C60-AgNPs Nano-Composites against Malignancies and Microbial<br>Infections. International Journal of Molecular Sciences, 2022, 23, 714.                                                                                        | 4.1 | 10        |
| 13 | Wet chemical development of CuO/GO nanocomposites: its augmented antimicrobial, antioxidant, and anticancerous activity. Journal of Materials Science: Materials in Medicine, 2021, 32, 151.                                                                         | 3.6 | 10        |
| 14 | Cembranoids from Boswellia species. Phytochemistry, 2021, 191, 112897.                                                                                                                                                                                               | 2.9 | 9         |
| 15 | Simple Prolineâ€Derived Phosphineâ€Thiazole Iridium Complexes for Asymmetric Hydrogenation of<br>Trisubstituted Olefins. Asian Journal of Organic Chemistry, 2013, 2, 674-680.                                                                                       | 2.7 | 8         |
| 16 | Synthesis and antimicrobial activity of 1 <i>H</i> -1,2,3-triazole and carboxylate analogues of metronidazole. Beilstein Journal of Organic Chemistry, 2021, 17, 2377-2384.                                                                                          | 2.2 | 8         |
| 17 | Rapid, efficient and selective conjugate addition of thiols to α, β-unsaturated carbonyl compounds using<br>silica supported sodium hydrogen sulfate under solvent-free conditions. Journal of Sulfur<br>Chemistry, 2008, 29, 489-494.                               | 2.0 | 5         |
| 18 | A waste valorization strategy for the synthesis of phenols from (hetero)arylboronic acids using pomegranate peel ash extract. Green Chemistry Letters and Reviews, 2022, 15, 426-435.                                                                                | 4.7 | 5         |

Satya Kumar Avula

| #  | Article                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Hydrophosphonylation of Benzoylhydrazones Using Iodine as a Catalyst: A Facile Synthesis of<br>α-(N′-Acylhydrazino)-Substituted PhosphonatesÀ¹. Synthesis, 2010, 2010, 3113-3116.              | 2.3 | 4         |
| 20 | Recent Advances in the Stereoselective Total Synthesis of Natural Pyranones Having Long Side Chains.<br>Molecules, 2020, 25, 1905.                                                             | 3.8 | 4         |
| 21 | A distinct novel approach for the synthesis of 3-indolyl-methanamines starting from indoles, aldehydes and nitrobenzenes in water. RSC Advances, 2013, 3, 14308.                               | 3.6 | 3         |
| 22 | Efficient organocatalytic multicomponent synthesis of (α-aminoalkyl)phosphonates. Arabian Journal of<br>Chemistry, 2016, 9, 787-791.                                                           | 4.9 | 3         |
| 23 | Naturally Occurring O-heterocycles as Anticancer Agents. Anti-Cancer Agents in Medicinal Chemistry, 2021, 21, .                                                                                | 1.7 | 3         |
| 24 | Metalâ€Free Multicomponent Synthesis of ( <i>α</i> â€Aminoalkyl)phosphonates Using<br>2,4,6â€Trichloroâ€1,3,5â€triazine. Helvetica Chimica Acta, 2011, 94, 1459-1462.                          | 1.6 | 2         |
| 25 | Total Synthesis of Surinamensinols A and B. SynOpen, 2020, 04, 84-88.                                                                                                                          | 1.7 | 2         |
| 26 | Heterogeneous Pd/C-catalyzed, ligand free Suzuki–Miyaura coupling reaction furnishes new<br>p-terphenyl derivatives. Natural Product Research, 2020, , 1-5.                                    | 1.8 | 2         |
| 27 | Incensole derivatives from frankincense: Isolation, enhancement, synthetic modification, and a plausible mechanism of their anti-depression activity. Bioorganic Chemistry, 2022, 126, 105900. | 4.1 | 1         |
| 28 | Microwave-Assisted: An Efficient Aqueous Suzuki-Miyaura Cross-Coupling Reaction of the Substituted<br>1H-1,2,3-Triazoles. Current Microwave Chemistry, 2022, 09, .                             | 0.8 | 0         |