
Laura Fariña

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9067755/publications.pdf Version: 2024-02-01

Ι ΛΙΙΦΑ ΕΛΟΙΑ̃+Λ

#	Article	IF	CITATIONS
1	Analytical Characterization of the Aroma of Five Premium Red Wines. Insights into the Role of Odor Families and the Concept of Fruitiness of Wines. Journal of Agricultural and Food Chemistry, 2007, 55, 4501-4510.	5.2	487
2	De novo synthesis of monoterpenes bySaccharomyces cerevisiaewine yeasts. FEMS Microbiology Letters, 2005, 243, 107-115.	1.8	230
3	Increased flavour diversity of Chardonnay wines by spontaneous fermentation and co-fermentation with Hanseniaspora vineae. Food Chemistry, 2013, 141, 2513-2521.	8.2	213
4	Production of fermentation aroma compounds by <i>Saccharomyces cerevisiae</i> wine yeasts: effects of yeast assimilable nitrogen on two model strains. FEMS Yeast Research, 2008, 8, 1196-1207.	2.3	210
5	Determination of volatile phenols in red wines by dispersive liquid–liquid microextraction and gas chromatography–mass spectrometry detection. Journal of Chromatography A, 2007, 1157, 46-50.	3.7	198
6	Aroma Composition ofVitis viniferaCv. Tannat:Â the Typical Red Wine from Uruguay. Journal of Agricultural and Food Chemistry, 2003, 51, 5408-5413.	5.2	122
7	A novel extracellular β-glucosidase from Issatchenkia terricola: Isolation, immobilization and application for aroma enhancement of white Muscat wine. Process Biochemistry, 2011, 46, 385-389.	3.7	96
8	Terpene Compounds as Possible Precursors of 1,8-Cineole in Red Grapes and Wines. Journal of Agricultural and Food Chemistry, 2005, 53, 1633-1636.	5.2	76
9	Volatile composition and aroma profile of Uruguayan Tannat wines. Food Research International, 2015, 69, 244-255.	6.2	70
10	A quick screening method to identify β-glucosidase activity in native wine yeast strains: application of Esculin Glycerol Agar (EGA) medium. World Journal of Microbiology and Biotechnology, 2011, 27, 47-55.	3.6	64
11	Genomic and Transcriptomic Basis of Hanseniaspora vineae's Impact on Flavor Diversity and Wine Quality. Applied and Environmental Microbiology, 2019, 85, .	3.1	51
12	Effect of Saccharomyces cerevisiae inoculum size on wine fermentation aroma compounds and its relation with assimilable nitrogen content. International Journal of Food Microbiology, 2010, 143, 81-85.	4.7	50
13	Aroma enhancement in wines using co-immobilized Aspergillus niger glycosidases. Food Chemistry, 2014, 143, 185-191.	8.2	48
14	<i>De Novo</i> Synthesis of Benzenoid Compounds by the Yeast <i>Hanseniaspora vineae</i> Increases the Flavor Diversity of Wines. Journal of Agricultural and Food Chemistry, 2016, 64, 4574-4583.	5.2	46
15	The Effect of Bacterial Strain and Aging on the Secondary Volatile Metabolites Produced during Malolactic Fermentation of Tannat Red Wine. Journal of Agricultural and Food Chemistry, 2009, 57, 6271-6278.	5.2	42
16	Redox effect on volatile compound formation in wine during fermentation by Saccharomyces cerevisiae. Food Chemistry, 2012, 134, 933-939.	8.2	41
17	Pineapple (Ananas comosus L. Merr.) wine production in Angola: Characterisation of volatile aroma compounds and yeast native flora. International Journal of Food Microbiology, 2017, 241, 161-167.	4.7	38
18	Characterization of aroma-impact compounds in yerba mate (Ilex paraguariensis) using GC–olfactometry and GC–MS. Food Research International, 2013, 53, 808-815.	6.2	33

Laura Fariña

#	Article	IF	CITATIONS
19	Characterization of Glycosylated Aroma Compounds in Tannat Grapes and Feasibility of the Near Infrared Spectroscopy Application for Their Prediction. Food Analytical Methods, 2013, 6, 100-111.	2.6	27
20	Nonâ€ <i>Saccharomyces</i> and <i>Saccharomyces</i> strains coâ€fermentation increases acetaldehyde accumulation: effect on anthocyaninâ€derived pigments in Tannat red wines. Yeast, 2016, 33, 339-343.	1.7	26
21	Valorisation of Schinus molle fruit as a source of volatile compounds in foods as flavours and fragrances. Food Research International, 2020, 133, 109103.	6.2	16
22	Volatile Constituents from <i>Baccharis</i> spp. L. (Asteraceae): Chemical Support for the Conservation of Threatened Species in Uruguay. Chemistry and Biodiversity, 2018, 15, e1800017.	2.1	13
23	Overproduction of isoprenoids by Saccharomyces cerevisiae in a synthetic grape juice medium in the absence of plant genes. International Journal of Food Microbiology, 2018, 282, 42-48.	4.7	12
24	Role of Canopy Management in Controlling High pH in Tannat Grapes and Wines. American Journal of Enology and Viticulture, 2012, 63, 554-558.	1.7	9
25	Impact of gas chromatography and mass spectrometry combined with gas chromatography and olfactometry for the sex differentiation of <i>Baccharis articulata</i> by the analysis of volatile compounds. Journal of Separation Science, 2015, 38, 3038-3046.	2.5	9
26	Recent Findings in the Chemistry of Odorants from FourBaccharisSpecies and Their Impact as Chemical Markers. Chemistry and Biodiversity, 2015, 12, 1339-1348.	2.1	9
27	Carotenoid Profile Evolution in <i>Vitis vinifera</i> cv. Tannat Grapes during Ripening. American Journal of Enology and Viticulture, 2010, 61, 451-456.	1.7	8
28	Application of near-infrared spectroscopy/artificial neural network to quantify glycosylated norisoprenoids in Tannat grapes. Food Chemistry, 2022, 387, 132927.	8.2	8
29	Chemical compositions of essential oil from the aerial parts of male and female plants of Baccharis tridentata Vahl. (Asteraceae). Journal of Essential Oil Research, 2021, 33, 299-307.	2.7	5
30	Chemical and sensory features of Torrontés Riojano sparkling wines produced by second fermentation in bottle using different Saccharomyces strains. Food Science and Technology International, 2020, 26, 512-519.	2.2	4
31	Comparison of physicochemical properties, amino acids, mineral elements, total phenolic compounds, and antioxidant capacity of Cuban fruit and rice wines. Food Science and Nutrition, 2021, 9, 3673-3682.	3.4	4
32	Phytochemical Findings Evidencing Botanical Origin of New Propolis Type from Northâ€West Argentina. Chemistry and Biodiversity, 2019, 16, e1800442.	2.1	2
33	Impacto en el aroma de vinos Tannat producidos por diferentes levaduras en tres sistemas de vinificación. South Florida Journal of Development, 2021, 2, 1565-1571.	0.1	1