Geoffrey Greene

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/906759/publications.pdf

Version: 2024-02-01

126708 168136 11,249 55 33 53 citations h-index g-index papers 61 61 61 9581 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Molecular basis of agonism and antagonism in the oestrogen receptor. Nature, 1997, 389, 753-758.	13.7	3,139
2	The Structural Basis of Estrogen Receptor/Coactivator Recognition and the Antagonism of This Interaction by Tamoxifen. Cell, 1998, 95, 927-937.	13.5	2,441
3	Sequence and expression of human estrogen receptor complementary DNA. Science, 1986, 231, 1150-1154.	6.0	1,223
4	ESR1 ligand-binding domain mutations in hormone-resistant breast cancer. Nature Genetics, 2013, 45, 1439-1445.	9.4	960
5	Overcoming mutation-based resistance to antiandrogens with rational drug design. ELife, 2013, 2, e00499.	2.8	334
6	Activating <i>ESR1</i> Mutations Differentially Affect the Efficacy of ER Antagonists. Cancer Discovery, 2017, 7, 277-287.	7.7	286
7	Structural Basis for an Unexpected Mode of SERM-Mediated ER Antagonism. Molecular Cell, 2005, 18, 413-424.	4.5	225
8	Estrogen receptor alpha somatic mutations Y537S and D538G confer breast cancer endocrine resistance by stabilizing the activating function-2 binding conformation. ELife, $2016, 5, .$	2.8	212
9	MicroRNA-30c inhibits human breast tumour chemotherapy resistance by regulating TWF1 and IL-11. Nature Communications, 2013, 4, 1393.	5.8	209
10	Structural characterization of a subtype-selective ligand reveals a novel mode of estrogen receptor antagonism. Nature Structural Biology, 2002, 9, 359-64.	9.7	188
11	NFκB selectivity of estrogen receptor ligands revealed by comparative crystallographic analyses. Nature Chemical Biology, 2008, 4, 241-247.	3.9	149
12	Structural underpinnings of oestrogen receptor mutations in endocrine therapy resistance. Nature Reviews Cancer, 2018, 18, 377-388.	12.8	148
13	Neutrophil elastase selectively kills cancer cells and attenuates tumorigenesis. Cell, 2021, 184, 3163-3177.e21.	13.5	119
14	14q32-encoded microRNAs mediate an oligometastatic phenotype. Oncotarget, 2015, 6, 3540-3552.	0.8	103
15	Allosteric Control of Ligand Selectivity between Estrogen Receptors \hat{l}_{\pm} and \hat{l}_{\pm} . Molecular Cell, 2004, 13, 317-327.	4.5	100
16	Genomic agonism and phenotypic antagonism between estrogen and progesterone receptors in breast cancer. Science Advances, 2016, 2, e1501924.	4.7	100
17	MicroRNA-30c targets cytoskeleton genes involved in breast cancer cell invasion. Breast Cancer Research and Treatment, 2013, 137, 373-382.	1.1	90
18	Stapled Peptides with γâ€Methylated Hydrocarbon Chains for the Estrogen Receptor/Coactivator Interaction. Angewandte Chemie - International Edition, 2016, 55, 4252-4255.	7.2	73

#	Article	IF	Citations
19	Analysis of the Structural Core of the Human Estrogen Receptor Ligand Binding Domain by Selective Proteolysis/Mass Spectrometric Analysis. Biochemistry, 1995, 34, 12605-12615.	1.2	72
20	The SERM/SERD bazedoxifene disrupts ESR1 helix 12 to overcome acquired hormone resistance in breast cancer cells. ELife, $2018, 7, .$	2.8	72
21	Identification of cysteine 530 as the covalent attachment site of an affinity-labeling estrogen (ketononestrol aziridine) and antiestrogen (tamoxifen aziridine) in the human estrogen receptor. Journal of Biological Chemistry, 1989, 264, 17476-85.	1.6	65
22	Estrogen and Progestin Receptors and Aromatase Activity in Rhesus Monkey Prostate*. Endocrinology, 1988, 123, 2312-2322.	1.4	62
23	Characterization of the Subunit Nature of Nuclear Estrogen Receptors by Chemical Cross-Linking and Dense Amino Acid Labeling*. Endocrinology, 1985, 117, 515-522.	1.4	57
24	Green tea catechins inhibit angiogenesis through suppression of STAT3 activation. Breast Cancer Research and Treatment, 2009, 117, 505-515.	1.1	56
25	Estrogen Inhibits Vascular Smooth Muscle Cell–Dependent Adventitial Fibroblast Migration In Vitro. Circulation, 1999, 100, 1639-1645.	1.6	55
26	Identification of Ligands with Bicyclic Scaffolds Provides Insights into Mechanisms of Estrogen Receptor Subtype Selectivity*. Journal of Biological Chemistry, 2006, 281, 17909-17919.	1.6	51
27	Discovery of a Glucocorticoid Receptor (GR) Activity Signature Using Selective GR Antagonism in ER-Negative Breast Cancer. Clinical Cancer Research, 2018, 24, 3433-3446.	3.2	49
28	Progesterone receptor isoforms, agonists and antagonists differentially reprogram estrogen signaling. Oncotarget, 2018, 9, 4282-4300.	0.8	49
29	Inhibition of mammary tumorigenesis in the $C3(1)/SV40$ mouse model by green tea. Breast Cancer Research and Treatment, 2008, 107, 359-369.	1.1	42
30	Specific stereochemistry of OP-1074 disrupts estrogen receptor alpha helix 12 and confers pure antiestrogenic activity. Nature Communications, 2018, 9, 2368.	5.8	42
31	Next-Generation ERα Inhibitors for Endocrine-Resistant ER+ Breast Cancer. Endocrinology, 2019, 160, 759-769.	1.4	42
32	Lasofoxifene as a potential treatment for therapy-resistant ER-positive metastatic breast cancer. Breast Cancer Research, 2021, 23, 54.	2.2	38
33	Recruitment of Histone Deacetylase 4 to the N-Terminal Region of Estrogen Receptor α. Molecular Endocrinology, 2005, 19, 2930-2942.	3.7	37
34	Molecular characterization of a B-ring unsaturated estrogen: Implications for conjugated equine estrogen components of Premarin. Steroids, 2008, 73, 59-68.	0.8	32
35	Versatile Peptide Macrocyclization with Diels–Alder Cycloadditions. Journal of the American Chemical Society, 2019, 141, 16374-16381.	6.6	32
36	The NF-κB Pathway Promotes Tamoxifen Tolerance and Disease Recurrence in Estrogen Receptor–Positive Breast Cancers. Molecular Cancer Research, 2020, 18, 1018-1027.	1.5	31

#	Article	IF	CITATIONS
37	Interferon-Stimulated Genes Are Transcriptionally Repressed by PR in Breast Cancer. Molecular Cancer Research, 2017, 15, 1331-1340.	1.5	29
38	RAC3 is a pro-migratory co-activator of ERα. Oncogene, 2011, 30, 1984-1994.	2.6	28
39	Molecular characterization by mass spectrometry of the human estrogen receptor ligand-binding domain expressed in Escherichia coli Molecular Endocrinology, 1995, 9, 647-658.	3.7	26
40	A "cross-stitched―peptide with improved helicity and proteolytic stability. Organic and Biomolecular Chemistry, 2018, 16, 3702-3706.	1.5	26
41	Endoxifen, 4-Hydroxytamoxifen and an Estrogenic Derivative Modulate Estrogen Receptor Complex Mediated Apoptosis in Breast Cancer. Molecular Pharmacology, 2018, 94, 812-822.	1.0	24
42	Removal of lactate dehydrogenase-elevating virus from human-in-mouse breast tumor xenografts by cell-sorting. Journal of Virological Methods, 2011, 173, 266-270.	1.0	22
43	A small-molecule activator of the unfolded protein response eradicates human breast tumors in mice. Science Translational Medicine, 2021, 13, .	5.8	20
44	The Structure-Function Relationship of Angular Estrogens and Estrogen Receptor Alpha to Initiate Estrogen-Induced Apoptosis in Breast Cancer Cells. Molecular Pharmacology, 2020, 98, 24-37.	1.0	19
45	Rapid Induction of the Unfolded Protein Response and Apoptosis by Estrogen Mimic TTC-352 for the Treatment of Endocrine-Resistant Breast Cancer. Molecular Cancer Therapeutics, 2021, 20, 11-25.	1.9	11
46	Mapping ER^2 Genomic Binding Sites Reveals Unique Genomic Features and Identifies $\mathrm{EBF}1$ as an ER^2 Interactor. PLoS ONE, 2013, 8, e71355.	1.1	11
47	Stereospecific lasofoxifene derivatives reveal the interplay between estrogen receptor alpha stability and antagonistic activity in ESR1 mutant breast cancer cells. ELife, 2022, 11 , .	2.8	11
48	Antagonists for Constitutively Active Mutant Estrogen Receptors: Insights into the Roles of Antiestrogen-Core and Side-Chain. ACS Chemical Biology, 2018, 13, 3374-3384.	1.6	8
49	Facilitating Drug Discovery in Breast Cancer by Virtually Screening Patients Using In Vitro Drug Response Modeling. Cancers, 2021, 13, 885.	1.7	6
50	Defining the Energetic Basis for a Conformational Switch Mediating Ligand-Independent Activation of Mutant Estrogen Receptors in Breast Cancer. Molecular Cancer Research, 2021, 19, 1559-1570.	1.5	6
51	Selective pressure of endocrine therapy activates the integrated stress response through NFκB signaling in a subpopulation of ER positive breast cancer cells. Breast Cancer Research, 2022, 24, 19.	2.2	6
52	Endocrine Therapy-Resistant Breast Cancer Cells Are More Sensitive to Ceramide Kinase Inhibition and Elevated Ceramide Levels Than Therapy-Sensitive Breast Cancer Cells. Cancers, 2022, 14, 2380.	1.7	4
53	A Structural Explanation for ERα/ERβ SERM Discrimination. , 2004, , 33-45.		2
54	Labeling of a Mutant Estrogen Receptor with an Affimer in a Breast Cancer Cell Line. Biophysical Journal, 2022, , .	0.2	1

:	#	Article	IF	CITATIONS
	55	Reinvestigating the acyl cyclization to the precursor of diptoindonesin G. Tetrahedron Letters, 2021, 69, 152980.	0.7	0