Xi-Qiao Feng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/906724/publications.pdf Version: 2024-02-01

XI-OIAO FENC

#	Article	IF	CITATIONS
1	Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Composites Part B: Engineering, 2008, 39, 933-961.	12.0	2,646
2	The Effect of Nanotube Waviness and Agglomeration on the Elastic Property of Carbon Nanotube-Reinforced Composites. Journal of Engineering Materials and Technology, Transactions of the ASME, 2004, 126, 250-257.	1.4	649
3	Mechanics of morphological instabilities and surface wrinkling in soft materials: a review. Soft Matter, 2012, 8, 5728.	2.7	620
4	Zeolitic Imidazolate Framework 67â€Đerived High Symmetric Porous Co ₃ O ₄ Hollow Dodecahedra with Highly Enhanced Lithium Storage Capability. Small, 2014, 10, 1932-1938.	10.0	442
5	Effects of surface elasticity and residual surface tension on the natural frequency of microbeams. Applied Physics Letters, 2007, 90, 231904.	3.3	407
6	Superior Water Repellency of Water Strider Legs with Hierarchical Structures:Â Experiments and Analysis. Langmuir, 2007, 23, 4892-4896.	3.5	334
7	Integrin activation and internalization on soft ECM as a mechanism of induction of stem cell differentiation by ECM elasticity. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 9466-9471.	7.1	302
8	Towards Understanding Why a Superhydrophobic Coating Is Needed by Water Striders. Advanced Materials, 2007, 19, 2257-2261.	21.0	278
9	Surface stress effect in mechanics of nanostructured materials. Acta Mechanica Solida Sinica, 2011, 24, 52-82.	1.9	274
10	Surface effects on buckling of nanowires under uniaxial compression. Applied Physics Letters, 2009, 94, .	3.3	266
11	Adhesion-dependent negative friction coefficient on chemically modified graphite at the nanoscale. Nature Materials, 2012, 11, 1032-1037.	27.5	258
12	Discontinuous crack-bridging model for fracture toughness analysis of nacre. Journal of the Mechanics and Physics of Solids, 2012, 60, 1400-1419.	4.8	233
13	Ultrasonic technique for extracting nanofibers from nature materials. Applied Physics Letters, 2007, 90, 073112.	3.3	225
14	Timoshenko beam model for buckling and vibration of nanowires with surface effects. Journal Physics D: Applied Physics, 2009, 42, 155411.	2.8	212
15	Surface Wrinkling Patterns on a Core-Shell Soft Sphere. Physical Review Letters, 2011, 106, 234301.	7.8	207
16	Surface wrinkling of mucosa induced by volumetric growth: Theory, simulation and experiment. Journal of the Mechanics and Physics of Solids, 2011, 59, 758-774.	4.8	196
17	Printable Skinâ€Driven Mechanoluminescence Devices via Nanodoped Matrix Modification. Advanced Materials, 2018, 30, e1800291.	21.0	178
18	Mechanical properties and scaling laws of nanoporous gold. Journal of Applied Physics, 2013, 113, .	2.5	171

#	Article	IF	CITATIONS
19	Effect of surface roughness on nanoindentation test of thin films. Engineering Fracture Mechanics, 2008, 75, 4965-4972.	4.3	163
20	Mechanical exfoliation of two-dimensional materials. Journal of the Mechanics and Physics of Solids, 2018, 115, 248-262.	4.8	143
21	Micromechanics prediction of the effective elastic moduli of graphene sheet-reinforced polymer nanocomposites. Modelling and Simulation in Materials Science and Engineering, 2010, 18, 045005.	2.0	141
22	Efficient Self-Propelling of Small-Scale Condensed Microdrops by Closely Packed ZnO Nanoneedles. Journal of Physical Chemistry Letters, 2014, 5, 2084-2088.	4.6	139
23	Guided Selfâ€Propelled Leaping of Droplets on a Microâ€Anisotropic Superhydrophobic Surface. Angewandte Chemie - International Edition, 2016, 55, 4265-4269.	13.8	135
24	Spontaneous droplets gyrating via asymmetric self-splitting on heterogeneous surfaces. Nature Communications, 2019, 10, 950.	12.8	135
25	Hierarchical chirality transfer in the growth of Towel Gourd tendrils. Scientific Reports, 2013, 3, 3102.	3.3	121
26	Interface thermal conductance and rectification in hybrid graphene/silicene monolayer. Carbon, 2014, 79, 236-244.	10.3	116
27	Mechanical properties of silkworm cocoons. Polymer, 2005, 46, 9192-9201.	3.8	112
28	Spherical indentation method for determining the constitutive parameters of hyperelastic soft materials. Biomechanics and Modeling in Mechanobiology, 2014, 13, 1-11.	2.8	112
29	Mechanisms of superhydrophobicity on hydrophilic substrates. Journal of Physics Condensed Matter, 2007, 19, 356002.	1.8	106
30	Effects of surface stresses on contact problems at nanoscale. Journal of Applied Physics, 2007, 101, 013510.	2.5	106
31	A Monte Carlo form-finding method for large scale regular and irregular tensegrity structures. International Journal of Solids and Structures, 2010, 47, 1888-1898.	2.7	103
32	Effect of surface stresses on the vibration and buckling of piezoelectric nanowires. Europhysics Letters, 2010, 91, 56007.	2.0	103
33	Possible giant magnetoelectric effect of ferromagnetic rare-earth–iron-alloys-filled ferroelectric polymers. Applied Physics Letters, 2001, 78, 2527-2529.	3.3	100
34	Mechanical property of carbon nanotubes with intramolecular junctions: Molecular dynamics simulations. Physics Letters, Section A: General, Atomic and Solid State Physics, 2008, 372, 6661-6666.	2.1	97
35	Surface effects on the elastic modulus of nanoporous materials. Applied Physics Letters, 2009, 94, .	3.3	96
36	Stiffness matrix based form-finding method of tensegrity structures. Engineering Structures, 2014, 58, 36-48.	5.3	96

#	Article	IF	CITATIONS
37	Buoyant force and sinking conditions of a hydrophobic thin rod floating on water. Physical Review E, 2007, 76, 066103.	2.1	94
38	Surface Stress Effects on the Bending Direction and Twisting Chirality of Lamellar Crystals of Chiral Polymer. Macromolecules, 2010, 43, 5762-5770.	4.8	94
39	Surface effects on the diffraction of plane compressional waves by a nanosized circular hole. Applied Physics Letters, 2006, 89, 231923.	3.3	91
40	Variability in mechanical properties of Bombyx mori silk. Materials Science and Engineering C, 2007, 27, 675-683.	7.3	91
41	Deep neural network method for predicting the mechanical properties of composites. Applied Physics Letters, 2019, 115, .	3.3	88
42	Mechanical properties of carbon nanotube ropes with hierarchical helical structures. Journal of the Mechanics and Physics of Solids, 2014, 71, 64-83.	4.8	81
43	A micromechanical model for interpenetrating multiphase composites. Computational Materials Science, 2003, 28, 486-493.	3.0	77
44	Self-Assembly of Single-Walled Carbon Nanotubes into Multiwalled Carbon Nanotubes in Water:Â Molecular Dynamics Simulations. Nano Letters, 2006, 6, 430-434.	9.1	75
45	A multiscale crack-bridging model of cellulose nanopaper. Journal of the Mechanics and Physics of Solids, 2017, 103, 22-39.	4.8	75
46	Analysis of spherical indentation of superelastic shape memory alloys. International Journal of Solids and Structures, 2007, 44, 1-17.	2.7	72
47	Tuning friction to a superlubric state via in-plane straining. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24452-24456.	7.1	72
48	On elastocapillarity: A review. Acta Mechanica Sinica/Lixue Xuebao, 2012, 28, 928-940.	3.4	71
49	Growth and surface folding of esophageal mucosa: A biomechanical model. Journal of Biomechanics, 2011, 44, 182-188.	2.1	70
50	Damage Micromechanics for Constitutive Relations and Failure of Microcracked Quasi-Brittle Materials. International Journal of Damage Mechanics, 2010, 19, 911-948.	4.2	69
51	Defect nucleation in carbon nanotubes under tension and torsion: Stone–Wales transformation. Computer Methods in Applied Mechanics and Engineering, 2004, 193, 3419-3429.	6.6	68
52	Surface wrinkling and folding of core–shell soft cylinders. Soft Matter, 2012, 8, 556-562.	2.7	68
53	A Tensegrity Model of Cell Reorientation on Cyclically Stretched Substrates. Biophysical Journal, 2016, 111, 1478-1486.	0.5	65
54	Droplet Precise Self‣plitting on Patterned Adhesive Surfaces for Simultaneous Multidetection. Angewandte Chemie - International Edition, 2020, 59, 10535-10539.	13.8	65

#	Article	IF	CITATIONS
55	Dynamic Migration Modes of Collective Cells. Biophysical Journal, 2018, 115, 1826-1835.	0.5	63
56	Mechanics of Smart-Cut® technology. International Journal of Solids and Structures, 2004, 41, 4299-4320.	2.7	62
57	Surface Effects on the Near-Tip Stresses for Mode-I and Mode-III Cracks. Journal of Applied Mechanics, Transactions ASME, 2008, 75, .	2.2	62
58	Impacts of environments on nanoscale wear behavior of graphene: Edge passivation vs. substrate pinning. Carbon, 2018, 139, 59-66.	10.3	62
59	A continuum theory of surface piezoelectricity for nanodielectrics. Science China: Physics, Mechanics and Astronomy, 2011, 54, 564-573.	5.1	61
60	Structures, properties, and functions of the stings of honey bees and paper wasps: a comparative study. Biology Open, 2015, 4, 921-928.	1.2	61
61	Biochemomechanical poroelastic theory of avascular tumor growth. Journal of the Mechanics and Physics of Solids, 2016, 94, 409-432.	4.8	61
62	A micromechanics-based damage model for microcrack-weakened brittle solids. Mechanics of Materials, 1995, 20, 59-76.	3.2	59
63	Experimental study on the mechanical properties of the horn sheaths from cattle. Journal of Experimental Biology, 2010, 213, 479-486.	1.7	59
64	Interface effects on effective elastic moduli of nanocrystalline materials. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2003, 363, 1-8.	5.6	58
65	An enriched radial point interpolation method (e-RPIM) for analysis of crack tip fields. Engineering Fracture Mechanics, 2011, 78, 175-190.	4.3	58
66	Instabilities of soft films on compliant substrates. Journal of the Mechanics and Physics of Solids, 2017, 98, 350-365.	4.8	58
67	Mechanoelectrical flexible hub-beam model of ionic-type solvent-free nanofluids. Mechanical Systems and Signal Processing, 2021, 159, 107833.	8.0	58
68	Shakedown analysis of shape memory alloy structures. International Journal of Plasticity, 2007, 23, 183-206.	8.8	57
69	Effects of tension–compression asymmetry on the surface wrinkling of film–substrate systems. Journal of the Mechanics and Physics of Solids, 2016, 94, 88-104.	4.8	57
70	Activation and synchronization of the oscillatory morphodynamics in multicellular monolayer. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8157-8162.	7.1	57
71	Two-dimensional Hertzian contact problem with surface tension. International Journal of Solids and Structures, 2012, 49, 1588-1594.	2.7	55
72	On the internal architecture of emergent plants. Journal of the Mechanics and Physics of Solids, 2018, 119, 224-239.	4.8	55

#	Article	IF	CITATIONS
73	A piezoelectric constitutive theory with rotation gradient effects. European Journal of Mechanics, A/Solids, 2004, 23, 455-466.	3.7	54
74	Twisting of nanowires induced by anisotropic surface stresses. Applied Physics Letters, 2008, 92, .	3.3	54
75	Buckling and post-buckling of a stiff film resting on an elastic graded substrate. International Journal of Solids and Structures, 2012, 49, 1656-1664.	2.7	54
76	On flaw tolerance of nacre: a theoretical study. Journal of the Royal Society Interface, 2014, 11, 20131016.	3.4	54
77	Abnormal conductivity in low-angle twisted bilayer graphene. Science Advances, 2020, 6, .	10.3	54
78	Mechanical properties of silkworm cocoon pelades. Engineering Fracture Mechanics, 2007, 74, 1953-1962.	4.3	53
79	Estimate of effective elastic moduli with microcrack interaction effects. Theoretical and Applied Fracture Mechanics, 2000, 34, 225-233.	4.7	51
80	Dynamic stress intensity factors of a semi-infinite crack in an orthotropic functionally graded material. Mechanics of Materials, 2008, 40, 37-47.	3.2	51
81	Pattern instability of a soft elastic thin film under van der Waals forces. Mechanics of Materials, 2006, 38, 88-99.	3.2	47
82	Surface effects in various bending-based test methods for measuring the elastic property of nanowires. Nanotechnology, 2010, 21, 205702.	2.6	47
83	Surface effects on mode-I crack tip fields: A numerical study. Engineering Fracture Mechanics, 2010, 77, 1048-1057.	4.3	47
84	Perspectives in mechanics of heterogeneous solids. Acta Mechanica Solida Sinica, 2011, 24, 1-26.	1.9	47
85	Effects of nanofiber orientations on the fracture toughness of cellulose nanopaper. Engineering Fracture Mechanics, 2018, 194, 350-361.	4.3	47
86	A simple method for calculating interaction of numerous microcracks and its applications. International Journal of Solids and Structures, 2003, 40, 447-464.	2.7	45
87	Interface effects on the diffraction of plane compressional waves by a nanosized spherical inclusion. Journal of Applied Physics, 2007, 102, 043533.	2.5	45
88	Surface effects on the near-tip stress fields of a mode-II crack. International Journal of Fracture, 2008, 151, 95-106.	2.2	45
89	Theoretical model and design of electroadhesive pad with interdigitated electrodes. Materials and Design, 2016, 89, 485-491.	7.0	45
90	Revisiting the Critical Condition for the Cassie–Wenzel Transition on Micropillar-Structured Surfaces. Langmuir, 2018, 34, 3838-3844.	3.5	45

#	Article	IF	CITATIONS
91	Effective Elastic and Plastic Properties of Interpenetrating Multiphase Composites. Applied Composite Materials, 2004, 11, 33-55.	2.5	43
92	Surface effects on the mechanical properties of nanoporous materials. Nanotechnology, 2011, 22, 265714.	2.6	43
93	Functional map of biological and biomimetic materials with hierarchical surface structures. RSC Advances, 2015, 5, 66901-66926.	3.6	43
94	Study of biomechanical, anatomical, and physiological properties of scorpion stingers for developing biomimetic materials. Materials Science and Engineering C, 2016, 58, 1112-1121.	7.3	43
95	Multiscale Analysis of Fracture of Carbon Nanotubes Embedded in Composites. International Journal of Fracture, 2005, 134, 369-386.	2.2	42
96	The Role of Adaptive-Deformation of Water Strider Leg in Its Walking on Water. Journal of Adhesion Science and Technology, 2009, 23, 493-501.	2.6	40
97	Self-equilibrium and super-stability of truncated regular polyhedral tensegrity structures: a unified analytical solution. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2012, 468, 3323-3347.	2.1	40
98	Axial compression-induced wrinkles on a core–shell soft cylinder: Theoretical analysis, simulations and experiments. Journal of the Mechanics and Physics of Solids, 2014, 73, 212-227.	4.8	40
99	Buckling of a slender rod confined in a circular tube: Theory, simulation, and experiment. International Journal of Mechanical Sciences, 2018, 140, 288-305.	6.7	40
100	Effects of thickness on mechanical properties of conducting polythiophene films. Journal of Materials Science Letters, 2002, 21, 715-717.	0.5	39
101	Effective elastic properties of nanoporous materials with hierarchical structure. Acta Materialia, 2011, 59, 6801-6808.	7.9	39
102	Friction of Droplets Sliding on Microstructured Superhydrophobic Surfaces. Langmuir, 2017, 33, 13480-13489.	3.5	39
103	Directional Motion of Droplets in a Conical Tube or on a Conical Fibre. Chinese Physics Letters, 2007, 24, 3210-3213.	3.3	38
104	Structures, properties, and energy-storage mechanisms of the semi-lunar process cuticles in locusts. Scientific Reports, 2016, 6, 35219.	3.3	38
105	Giant energy absorption capacity of graphene-based carbon honeycombs. Carbon, 2017, 118, 348-357.	10.3	38
106	Role of flexibility in the water repellency of water strider legs: Theory and experiment. Physical Review E, 2012, 85, 021607.	2.1	37
107	Hierarchical capillary adhesion of microcantilevers or hairs. Journal Physics D: Applied Physics, 2007, 40, 5564-5570.	2.8	36
108	Superior flexibility of super carbon nanotubes: Molecular dynamics simulations. Applied Physics Letters, 2007, 91, .	3.3	36

#	Article	IF	CITATIONS
109	An electromechanical liquid crystal model of vesicles. Journal of the Mechanics and Physics of Solids, 2008, 56, 2844-2862.	4.8	36
110	Constructing tensegrity structures from one-bar elementary cells. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2010, 466, 45-61.	2.1	36
111	Numerical study on the effects of hierarchical wavy interface morphology on fracture toughness. Computational Materials Science, 2012, 57, 14-22.	3.0	36
112	Curvature induced hierarchical wrinkling patterns in soft bilayers. Soft Matter, 2016, 12, 7977-7982.	2.7	36
113	Microtensile tests of mechanical properties of nanoporous Au thin films. Journal of Materials Science, 2009, 44, 4728-4733.	3.7	35
114	Orientations of Cells on Compliant Substrates under Biaxial Stretches: A Theoretical Study. Biophysical Journal, 2018, 114, 701-710.	0.5	35
115	Piezo1 regulates migration and invasion of breast cancer cells via modulating cell mechanobiological properties. Acta Biochimica Et Biophysica Sinica, 2020, 53, 10-18.	2.0	35
116	Molecular-Dynamic Studies of Carbon–Water–Carbon Composite Nanotubes. Small, 2006, 2, 1348-1355.	10.0	34
117	Surface buckling of a bending microbeam due to surface elasticity. Europhysics Letters, 2007, 77, 44002.	2.0	34
118	Correlation of the thermal and electrical conductivities of nanoporous gold. Nanotechnology, 2010, 21, 085703.	2.6	34
119	Numerical exploration of plastic deformation mechanisms of copper nanowires with surface defects. Computational Materials Science, 2011, 50, 3425-3430.	3.0	34
120	Static and dynamic mechanical properties of cattle horns. Materials Science and Engineering C, 2011, 31, 179-183.	7.3	34
121	Wrinkling of a bilayer resting on a soft substrate under in-plane compression. Philosophical Magazine, 2012, 92, 1554-1568.	1.6	34
122	Wrinkling micropatterns regulated by a hard skin layer with a periodic stiffness distribution on a soft material. Applied Physics Letters, 2016, 108, 021903.	3.3	34
123	Energetics of mesoscale cell turbulence in two-dimensional monolayers. Communications Physics, 2021, 4, .	5.3	34
124	Transient response of an interface crack between dissimilar piezoelectric layers under mechanical impacts. International Journal of Solids and Structures, 2002, 39, 1743-1756.	2.7	33
125	Elasticity-driven droplet movement on a microbeam with gradient stiffness: A biomimetic self-propelling mechanism. Journal of Colloid and Interface Science, 2008, 323, 133-140.	9.4	33
126	An approximate continuum theory for interaction between dislocation and inhomogeneity of any shape and properties. Journal of Applied Physics, 2011, 109, .	2.5	33

#	Article	IF	CITATIONS
127	Moiré superlattice-level stick-slip instability originated from geometrically corrugated graphene on a strongly interacting substrate. 2D Materials, 2017, 4, 025079.	4.4	33
128	Biomechanical modeling of surface wrinkling of soft tissues with growth-dependent mechanical properties. Acta Mechanica Solida Sinica, 2012, 25, 483-492.	1.9	32
129	A non-equilibrium thermodynamic model for tumor extracellular matrix with enzymatic degradation. Journal of the Mechanics and Physics of Solids, 2017, 104, 32-56.	4.8	32
130	Breaking the symmetry to suppress the Plateau–Rayleigh instability and optimize hydropower utilization. Nature Communications, 2021, 12, 6899.	12.8	32
131	Two-dimensional model of vesicle adhesion on curved substrates. Acta Mechanica Sinica/Lixue Xuebao, 2006, 22, 529-535.	3.4	31
132	Mechanical Properties of Chitin–Protein Interfaces: A Molecular Dynamics Study. BioNanoScience, 2013, 3, 312-320.	3.5	31
133	Integrin activation and internalization mediated by extracellular matrix elasticity: A biomechanical model. Journal of Biomechanics, 2014, 47, 1479-1484.	2.1	31
134	Morphomechanics of bacterial biofilms undergoing anisotropic differential growth. Applied Physics Letters, 2016, 109, .	3.3	31
135	On shakedown of three-dimensional elastoplastic strain-hardening structures. International Journal of Plasticity, 1996, 12, 1241-1256.	8.8	30
136	Limit analysis of ductile composites based on homogenization theory. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2003, 459, 659-675.	2.1	30
137	Buckling and postbuckling of a compressed thin film bonded on a soft elastic layer: a three-dimensional analysis. Archive of Applied Mechanics, 2010, 80, 175-188.	2.2	30
138	Channel morphology effect on water transport through graphene bilayers. Scientific Reports, 2016, 6, 38583.	3.3	30
139	Collective dynamics of cancer cells confined in a confluent monolayer of normal cells. Journal of Biomechanics, 2017, 52, 140-147.	2.1	30
140	Experimental and theoretical studies on the morphogenesis of bacterial biofilms. Soft Matter, 2017, 13, 7389-7397.	2.7	30
141	Contact stiffness of regularly patterned multi-asperity interfaces. Journal of the Mechanics and Physics of Solids, 2018, 111, 277-289.	4.8	30
142	Stone–Wales transformation: Precursor of fracture in carbon nanotubes. International Journal of Mechanical Sciences, 2006, 48, 1464-1470.	6.7	29
143	A phase field method for simulating morphological evolution of vesicles in electric fields. Journal of Computational Physics, 2009, 228, 4162-4181.	3.8	29
144	Effect of lateral dimension on the surface wrinkling of a thin film on compliant substrate induced by differential growth/swelling. Journal of the Mechanics and Physics of Solids, 2015, 83, 129-145.	4.8	29

#	Article	IF	CITATIONS
145	Morphological optimization of scorpion telson. Journal of the Mechanics and Physics of Solids, 2020, 135, 103773.	4.8	29
146	Structural topology optimization with an adaptive design domain. Computer Methods in Applied Mechanics and Engineering, 2022, 389, 114382.	6.6	29
147	Numerical analysis of interaction and coalescence of numerous microcracks. Engineering Fracture Mechanics, 2005, 72, 1841-1865.	4.3	28
148	Anisotropic surface effects on the formation of chiral morphologies of nanomaterials. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2012, 468, 609-633.	2.1	28
149	A unified solution for self-equilibrium and super-stability of rhombic truncated regular polyhedral tensegrities. International Journal of Solids and Structures, 2013, 50, 234-245.	2.7	28
150	A truncated conical beam model for analysis of the vibration of rat whiskers. Journal of Biomechanics, 2013, 46, 1987-1995.	2.1	28
151	Disentangling longitudinal and shear elastic waves by neo-Hookean soft devices. Applied Physics Letters, 2015, 106, .	3.3	28
152	Mechanical Roles of F-Actin in the Differentiation of Stem Cells: A Review. ACS Biomaterials Science and Engineering, 2019, 5, 3788-3801.	5.2	28
153	Wrinkling pattern evolution on curved surfaces. Journal of the Mechanics and Physics of Solids, 2020, 135, 103798.	4.8	28
154	Domino-like stacking order switching in twisted monolayer–multilayer graphene. Nature Materials, 2022, 21, 621-626.	27.5	28
155	Coarse-grained mechanochemical model for simulating the dynamic behavior of microtubules. Physical Review E, 2011, 84, 031933.	2.1	27
156	Spontaneous formation of double helical structure due to interfacial adhesion. Applied Physics Letters, 2012, 100, 263104.	3.3	27
157	A Numerical Method for Simulating Nonlinear Mechanical Responses of Tensegrity Structures Under Large Deformations. Journal of Applied Mechanics, Transactions ASME, 2013, 80, .	2.2	27
158	Surface Wrinkling Patterns of Film–Substrate Systems With a Structured Interface. Journal of Applied Mechanics, Transactions ASME, 2015, 82, .	2.2	27
159	Towards a quantitative understanding of period-doubling wrinkling patterns occurring in film/substrate bilayer systems. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2015, 471, 20140695.	2.1	27
160	Stability of Cassie-Baxter wetting states on microstructured surfaces. Physical Review E, 2016, 94, 042801.	2.1	27
161	Effects of surface tension on the adhesive contact between a hard sphere and a soft substrate. International Journal of Solids and Structures, 2016, 84, 133-138.	2.7	27
162	Damage and shakedown analysis of structures with strain-hardening. International Journal of Plasticity, 1995, 11, 237-249.	8.8	26

#	Article	IF	CITATIONS
163	Transient response of an insulating crack between dissimilar piezoelectric layers under mechanical and electrical impacts. Archive of Applied Mechanics, 2002, 72, 615-629.	2.2	26
164	Theoretical analysis of resonance frequency change induced by adsorption. Journal Physics D: Applied Physics, 2008, 41, 125306.	2.8	26
165	Theoretical analysis of adsorption-induced microcantilever bending. Journal of Applied Physics, 2008, 103, .	2.5	26
166	Guided Selfâ€Propelled Leaping of Droplets on a Microâ€Anisotropic Superhydrophobic Surface. Angewandte Chemie, 2016, 128, 4337-4341.	2.0	26
167	Handedness-dependent hyperelasticity of biological soft fibers with multilayered helical structures. International Journal of Non-Linear Mechanics, 2016, 81, 19-29.	2.6	26
168	Propagation of Love waves with surface effects in an electrically-shorted piezoelectric nanofilm on a half-space elastic substrate. Ultrasonics, 2016, 66, 65-71.	3.9	26
169	Quasi-micromechanical damage model for brittle solids with interacting microcracks. Mechanics of Materials, 2004, 36, 261-273.	3.2	25
170	Determination of transformation stresses of shape memory alloy thin films: A method based on spherical indentation. Applied Physics Letters, 2006, 88, 241912.	3.3	25
171	Biomechanical tactics of chiral growth in emergent aquatic macrophytes. Scientific Reports, 2015, 5, 12610.	3.3	25
172	Quantum dots-reinforced luminescent silkworm silk with superior mechanical properties and highly stable fluorescence. Journal of Materials Science, 2019, 54, 9945-9957.	3.7	25
173	Effect of shear stress on adhesive contact with a generalized Maugis-Dugdale cohesive zone model. Journal of the Mechanics and Physics of Solids, 2021, 148, 104275.	4.8	25
174	Self-Assembled Nanostructures of Homopolymer and Diblock Copolymer Blends in a Selective Solvent. Journal of Physical Chemistry B, 2010, 114, 1257-1263.	2.6	24
175	On the Applicability of Sneddon's Solution for Interpreting the Indentation of Nonlinear Elastic Biopolymers. Journal of Applied Mechanics, Transactions ASME, 2014, 81, .	2.2	24
176	A nonlinear poroelastic theory of solid tumors with glycosaminoglycan swelling. Journal of Theoretical Biology, 2017, 433, 49-56.	1.7	24
177	Nacre's brick–mortar structure suppresses the adverse effect of microstructural randomness. Journal of the Mechanics and Physics of Solids, 2022, 159, 104769.	4.8	24
178	A new micro-tensile system for measuring the mechanical properties of low-dimensional materials—Fibers and films. Polymer Testing, 2007, 26, 513-518.	4.8	23
179	Analysis of bending and buckling of pre-twisted beams: A bioinspired study. Acta Mechanica Sinica/Lixue Xuebao, 2014, 30, 507-515.	3.4	23
180	A self-consistent model for the elastic contact of rough surfaces. Acta Mechanica, 2015, 226, 285-293.	2.1	23

#	Article	IF	CITATIONS
181	Engineering Surface Patterns with Shape Memory Polymers: Multiple Design Dimensions for Diverse and Hierarchical Structures. ACS Applied Materials & Interfaces, 2019, 11, 1563-1570.	8.0	23
182	Optocapillarity-driven assembly and reconfiguration of liquid crystal polymer actuators. Nature Communications, 2020, 11, 5780.	12.8	23
183	Collective dynamics of coherent motile cells on curved surfaces. Soft Matter, 2020, 16, 2941-2952.	2.7	23
184	Micromechanical modelling of tensile response of elastic-brittle materials. International Journal of Solids and Structures, 1995, 32, 3359-3372.	2.7	22
185	Numerical simulations of the normal impact of adhesive microparticles with a rigid substrate. Powder Technology, 2009, 189, 34-41.	4.2	22
186	Design methods of rhombic tensegrity structures. Acta Mechanica Sinica/Lixue Xuebao, 2010, 26, 559-565.	3.4	22
187	Geometry independence of the normalized relaxation functions of viscoelastic materials in indentation. Philosophical Magazine, 2010, 90, 1639-1655.	1.6	22
188	IMPROVEMENT OF THE PEELING STRENGTH OF THIN FILMS BY A BIOINSPIRED HIERARCHICAL INTERFACE. International Journal of Applied Mechanics, 2013, 05, 1350012.	2.2	22
189	Buckling of an elastic fiber with finite length in a soft matrix. Soft Matter, 2016, 12, 2086-2094.	2.7	22
190	Tuning Local Electrical Conductivity via Fine Atomic Scale Structures of Two-Dimensional Interfaces. Nano Letters, 2018, 18, 6030-6036.	9.1	22
191	Biochemomechanical modeling of vascular collapse in growing tumors. Journal of the Mechanics and Physics of Solids, 2018, 121, 463-479.	4.8	22
192	Topology optimization method for the design of bioinspired self-similar hierarchical microstructures. Computer Methods in Applied Mechanics and Engineering, 2020, 372, 113399.	6.6	22
193	Surface effects on cylindrical indentation of a soft layer on a rigid substrate. Acta Mechanica Sinica/Lixue Xuebao, 2020, 36, 422-429.	3.4	22
194	Fracture toughness analysis of helical fiber-reinforced biocomposites. Journal of the Mechanics and Physics of Solids, 2021, 146, 104206.	4.8	22
195	Effects of electric fatigue on the butterfly curves of ferroelectric ceramics. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 459, 273-277.	5.6	21
196	Controllable nanostructural transitions in grafted nanoparticle-block copolymer composites. Nano Research, 2010, 3, 356-362.	10.4	21
197	A molecular mechanisms-based biophysical model for two-phase cell spreading. Applied Physics Letters, 2010, 96, 043703.	3.3	21
198	Hierarchical multiscale model for biomechanics analysis of microfilament networks. Journal of Applied Physics, 2013, 113, 194701.	2.5	21

#	Article	IF	CITATIONS
199	Optimal characteristic nanosizes of mineral bridges in mollusk nacre. RSC Advances, 2014, 4, 32451-32456.	3.6	21
200	Wrinkling pattern evolution of cylindrical biological tissues with differential growth. Physical Review E, 2015, 91, 012403.	2.1	21
201	Synergistic Effects of Chiral Morphology and Reconfiguration in Cattail Leaves. Journal of Bionic Engineering, 2015, 12, 634-642.	5.0	21
202	Surface wrinkling of anisotropic films bonded on a compliant substrate. International Journal of Solids and Structures, 2018, 141-142, 219-231.	2.7	21
203	Functional gradient effects on the energy absorption of spider orb webs. Applied Physics Letters, 2018, 113, .	3.3	21
204	Ultrastructural organization of NompC in the mechanoreceptive organelle of <i>Drosophila</i> campaniform mechanoreceptors. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7343-7352.	7.1	21
205	Effect of interfacial slippage in peel test: Theoretical model. European Physical Journal E, 2007, 23, 67-76.	1.6	20
206	Theoretical study of the competition between cell-cell and cell-matrix adhesions. Physical Review E, 2009, 80, 011921.	2.1	20
207	Lifeact and Utr230 induce distinct actin assemblies in cell nuclei. Cytoskeleton, 2015, 72, 570-575.	2.0	20
208	Controlling elastic wave propagation in a soft bilayer system via wrinkling-induced stress patterns. Soft Matter, 2016, 12, 4204-4213.	2.7	20
209	Compression Generated by a 3D Supracellular Actomyosin Cortex Promotes Embryonic Stem Cell Colony Growth and Expression of Nanog and Oct4. Cell Systems, 2019, 9, 214-220.e5.	6.2	20
210	Dual-Scale Stick-Slip Friction on <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:mtext>Graphene</mml:mtext><mml:mo>/</mml:mo><mml:mrow><mml:m Moiré Superlattice Structure. Physical Review Letters, 2022, 128, .</mml:m </mml:mrow></mml:mrow></mml:math>	ii>hr≪ ∌ mml	:mi 2 0/mml:mr
211	A new damage model for microcrack-weakened brittle solids. Acta Mechanica Sinica/Lixue Xuebao, 1993, 9, 251-260.	3.4	19
212	Three-Dimensional Micromechanical Model for Quasi-Brittle Solids with Residual Strains under Tension. International Journal of Damage Mechanics, 2000, 9, 79-110.	4.2	19
213	Wearless scratch on NiTi shape memory alloy due to phase transformational shakedown. Applied Physics Letters, 2008, 92, 121909.	3.3	19
214	Self-assembled lipid nanostructures encapsulating nanoparticles in aqueous solution. Soft Matter, 2009, 5, 3977.	2.7	19
215	Self-assembly of organic–inorganic nanocomposites with nacre-like hierarchical structures. Soft Matter, 2011, 7, 4828.	2.7	19
216	Effects of internal pressure and surface tension on the growth-induced wrinkling of mucosae. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 29, 594-601.	3.1	19

#	Article	IF	CITATIONS
217	Energy corrugation in atomic-scale friction on graphite revisited by molecular dynamics simulations. Acta Mechanica Sinica/Lixue Xuebao, 2016, 32, 604-610.	3.4	19
218	A dynamic cellular vertex model of growing epithelial tissues. Acta Mechanica Sinica/Lixue Xuebao, 2017, 33, 250-259.	3.4	19
219	Decohesion of a rigid flat punch from an elastic layer of finite thickness. Journal of the Mechanics and Physics of Solids, 2020, 139, 103937.	4.8	19
220	On the coalescence of collinear cracks in quasi-brittle materials. Engineering Fracture Mechanics, 2000, 65, 511-524.	4.3	18
221	Interfacial slippage effect on the surface instability of a thin elastic film under van der Waals force. Journal Physics D: Applied Physics, 2009, 42, 055302.	2.8	18
222	Surface effects on the elasticity of nanosprings. Europhysics Letters, 2010, 92, 16002.	2.0	18
223	EFFECTS OF SURFACE ELASTICITY ON MIXED-MODE FRACTURE. International Journal of Applied Mechanics, 2011, 03, 435-446.	2.2	18
224	Spontaneous instability of soft thin films on curved substrates due to van der Waals interaction. Journal of the Mechanics and Physics of Solids, 2011, 59, 610-624.	4.8	18
225	Controlled Release and Assembly of Drug Nanoparticles via pH-Responsive Polymeric Micelles: A Theoretical Study. Journal of Physical Chemistry B, 2012, 116, 6003-6009.	2.6	18
226	Wrinkling and creasing of a compressed elastoplastic film resting on a soft substrate. Computational Materials Science, 2012, 57, 111-117.	3.0	18
227	Buckling and postbuckling of stiff lamellae in a compliant matrix. Composites Science and Technology, 2014, 99, 89-95.	7.8	18
228	Constructing large-scale tensegrity structures with bar–bar connection using prismatic elementary cells. Archive of Applied Mechanics, 2015, 85, 383-394.	2.2	18
229	Lateral force modulation by moiré superlattice structure: Surfing on periodically undulated graphene sheets. Carbon, 2017, 125, 76-83.	10.3	18
230	Synergistic adhesion mechanisms of spider capture silk. Journal of the Royal Society Interface, 2018, 15, 20170894.	3.4	18
231	Dynamic instability and migration modes of collective cells in channels. Journal of the Royal Society Interface, 2019, 16, 20190258.	3.4	18
232	Bionic torus as a self-adaptive soft grasper in robots. Applied Physics Letters, 2020, 116, .	3.3	18
233	Deep learning method for determining the surface elastic moduli of microstructured solids. Extreme Mechanics Letters, 2021, 44, 101226.	4.1	18
234	Bio-chemo-mechanical theory of active shells. Journal of the Mechanics and Physics of Solids, 2021, 152, 104419.	4.8	18

#	Article	IF	CITATIONS
235	Three-dimensional crack bridging model of biological materials with twisted Bouligand structures. Journal of the Mechanics and Physics of Solids, 2022, 159, 104729.	4.8	18
236	An Upper Bound on Damage of Elastic-Plastic Structures at Shakedown. International Journal of Damage Mechanics, 1994, 3, 277-289.	4.2	17
237	Plasma surface graft of acrylic acid and biodegradation of poly(butylene succinate) films. Thin Solid Films, 2008, 516, 5659-5663.	1.8	17
238	BUCKLING AND SURFACE WRINKLING OF AN ELASTIC GRADED CYLINDER WITH ELASTIC MODULUS ARBITRARILY VARYING ALONG RADIAL DIRECTION. International Journal of Applied Mechanics, 2014, 06, 1450003.	2.2	17
239	Spear and Shield: Survival War between Mantis Shrimps and Abalones. Advanced Materials Interfaces, 2015, 2, 1500250.	3.7	17
240	Mechanical properties of graphynes under shearing and bending. Journal of Applied Physics, 2016, 119, .	2.5	17
241	Post-Buckling Analysis of a Rod Confined in a Cylindrical Tube. Journal of Applied Mechanics, Transactions ASME, 2018, 85, .	2.2	17
242	Title is missing!. International Journal of Fracture, 2002, 116, 29-34.	2.2	16
243	Three-dimensional analysis of spontaneous surface instability and pattern formation of thin soft films. Journal of Applied Physics, 2008, 103, 083501.	2.5	16
244	Determination of the elastic modulus of micro- and nanowires/tubes using a buckling-based metrology. Scripta Materialia, 2009, 61, 1044-1047.	5.2	16
245	Atomic-scale finite element analysis of vibration mode transformation in carbon nanorings and single-walled carbon nanotubes. International Journal of Solids and Structures, 2009, 46, 4342-4360.	2.7	16
246	Archimedean spiral wrinkles on a film-substrate system induced by torsion. Applied Physics Letters, 2014, 104, 031910.	3.3	16
247	Snapping instability in prismatic tensegrities under torsion. Applied Mathematics and Mechanics (English Edition), 2016, 37, 275-288.	3.6	16
248	An oscillating dynamic model of collective cells in a monolayer. Journal of the Mechanics and Physics of Solids, 2018, 112, 650-666.	4.8	16
249	Predictive assembling model reveals the self-adaptive elastic properties of lamellipodial actin networks for cell migration. Communications Biology, 2020, 3, 616.	4.4	16
250	<i>Ciona</i> embryonic tail bending is driven by asymmetrical notochord contractility and coordinated by epithelial proliferation. Development (Cambridge), 2020, 147, .	2.5	16
251	A global/local shakedown analysis method of elastoplastic cracked structures. Engineering Fracture Mechanics, 1999, 63, 179-192.	4.3	15
252	An approximate scheme for considering effects of microcrack interaction on the overall constitutive relation of brittle solids under complex loading. Acta Mechanica, 2000, 139, 143-159.	2.1	15

#	Article	IF	CITATIONS
253	Surface patterning of soft polymer film-coated cylinders via an electric field. Journal of Physics Condensed Matter, 2009, 21, 445006.	1.8	15
254	Surface wrinkling of nanostructured thin films on a compliant substrate. Computational Materials Science, 2010, 49, 767-772.	3.0	15
255	Chirality Transfer from Molecular to Morphological Scales in Quasi-One-Dimensional Nanomaterials: A Continuum Model. Journal of Computational and Theoretical Nanoscience, 2011, 8, 1278-1287.	0.4	15
256	Atomistic calculations of surface energy of spherical copper surfaces. Acta Mechanica Solida Sinica, 2012, 25, 557-561.	1.9	15
257	Mechanical properties of bioinspired bicontinuous nanocomposites. Computational Materials Science, 2013, 80, 71-78.	3.0	15
258	Stable elastic wave band-gaps of phononic crystals with hyperelastic transformation materials. Extreme Mechanics Letters, 2017, 11, 37-41.	4.1	15
259	Analyses of damage localization at crack tip in a brittle damaged material. Engineering Fracture Mechanics, 1996, 53, 169-177.	4.3	14
260	Capillary Adhesion of Microbeams: Finite Deformation Analysis. Chinese Physics Letters, 2007, 24, 2349-2352.	3.3	14
261	Position transitions of polymer-grafted nanoparticles in diblock-copolymer nanocomposites. EXPRESS Polymer Letters, 2011, 5, 374-383.	2.1	14
262	Magnetorheological brush – a soft structure with highly tuneable stiffness. Soft Matter, 2014, 10, 1537.	2.7	14
263	A Dynamic Biochemomechanical Model of Geometry-Confined Cell Spreading. Biophysical Journal, 2017, 112, 2377-2386.	0.5	14
264	Bio–chemo–mechanical modeling of growing biological tissues: Finite element method. International Journal of Non-Linear Mechanics, 2019, 108, 46-54.	2.6	14
265	Mechanochemical Modeling of Dynamic Microtubule Growth Involving Sheet-to-Tube Transition. PLoS ONE, 2011, 6, e29049.	2.5	14
266	Regulation of cell attachment, spreading, and migration by hydrogel substrates with independently tunable mesh size. Acta Biomaterialia, 2022, 141, 178-189.	8.3	14
267	Deep learning method for predicting the strengths of microcracked brittle materials. Engineering Fracture Mechanics, 2022, 271, 108600.	4.3	14
268	Morphology of Liquid Drops and thin Films on a Solid Surface with Sinusoidal Microstructures. Acta Mechanica Sinica/Lixue Xuebao, 2006, 22, 315-322.	3.4	13
269	Dislocation-based semi-analytical method for calculating stress intensity factors of cracks: Two-dimensional cases. Engineering Fracture Mechanics, 2010, 77, 3521-3531.	4.3	13
270	Semi-Analytic Solution of Multiple Inhomogeneous Inclusions and Cracks in an Infinite Space. International Journal of Computational Methods, 2015, 12, 1550002.	1.3	13

#	Article	IF	CITATIONS
271	Wrinkling of a stiff film resting on a fiber-filled soft substrate and its potential application as tunable metamaterials. Extreme Mechanics Letters, 2017, 11, 121-127.	4.1	13
272	Bulge test method for measuring the hyperelastic parameters of soft membranes. Acta Mechanica, 2017, 228, 4187-4197.	2.1	13
273	Impacts of the substrate stiffness on the anti-wear performance of graphene. AIP Advances, 2019, 9, .	1.3	13
274	Universal Statistical Laws for the Velocities of Collective Migrating Cells. Advanced Biology, 2020, 4, e2000065.	3.0	13
275	The development of creep damage constitutive equations for high Cr steel. Materials at High Temperatures, 2020, 37, 129-138.	1.0	13
276	Why are isolated and collective cells greatly different in stiffness?. Journal of the Mechanics and Physics of Solids, 2021, 147, 104280.	4.8	13
277	On estimation methods for effective moduli of microcracked solids. Archive of Applied Mechanics, 2001, 71, 537-548.	2.2	12
278	Analysis on interaction of numerous microcracks. Computational Materials Science, 2003, 28, 454-461.	3.0	12
279	Influence of thickness and number of dielectric layers on residual stresses in micromultilayer ceramic capacitors. Journal of Applied Physics, 2007, 101, 104117.	2.5	12
280	A three-dimensional theoretical model for estimating the thermal residual stresses in micro multilayer ceramic capacitors. Composites Science and Technology, 2008, 68, 692-698.	7.8	12
281	Mechanical properties of cocoons constructed consecutively by a single silkworm caterpillar, Bombyx mori. Acta Mechanica Sinica/Lixue Xuebao, 2008, 24, 151-160.	3.4	12
282	Fundamental solution of a power-law orthotropic and half-space functionally graded material under line loads. Composites Science and Technology, 2008, 68, 27-34.	7.8	12
283	Mucosal wrinkling in animal antra induced by volumetric growth. Applied Physics Letters, 2011, 98, .	3.3	12
284	Fracture toughness of laminates reinforced by piezoelectric z-pins. Theoretical and Applied Fracture Mechanics, 2015, 77, 35-40.	4.7	12
285	A Role of BK Channel in Regulation of Ca 2+ Channel in Ventricular Myocytes by Substrate Stiffness. Biophysical Journal, 2017, 112, 1406-1416.	0.5	12
286	Wrinkling patterns in soft shells. Soft Matter, 2018, 14, 1681-1688.	2.7	12
287	Gas migration in the reservoirs of ultra-low porosity and permeability based on an improved apparent permeability model. Journal of Petroleum Science and Engineering, 2020, 185, 106614.	4.2	12
288	Fracture mechanics analysis of the effects of temperature and material mismatch on the Smart-Cut® technology. Engineering Fracture Mechanics, 2008, 75, 4996-5006.	4.3	11

#	Article	IF	CITATIONS
289	Evaluation of Threshold Voltage for 30 nm Symmetric Double Gate (SDG) MOSFET and It's Variation with Process Parameters. Journal of Computational and Theoretical Nanoscience, 2008, 5, 619-626.	0.4	11
290	Pipette aspiration of hyperelastic compliant materials: Theoretical analysis, simulations and experiments. Journal of the Mechanics and Physics of Solids, 2014, 68, 179-196.	4.8	11
291	Micro/Nanostructures and Mechanical Properties of Trabecular Bone in Ovariectomized Rats. International Journal of Endocrinology, 2015, 2015, 1-10.	1.5	11
292	Mechanics of Fibrous Biological Materials With Hierarchical Chirality. Journal of Applied Mechanics, Transactions ASME, 2016, 83, .	2.2	11
293	Review and perspective on soft matter modeling in cellular mechanobiology: cell contact, adhesion, mechanosensing, and motility. Acta Mechanica, 2017, 228, 4095-4122.	2.1	11
294	Sliding friction and contact angle hysteresis of droplets on microhole-structured surfaces. European Physical Journal E, 2018, 41, 25.	1.6	11
295	Determinative Surface-Wrinkling Microstructures on Polypyrrole Films by Laser Writing. Langmuir, 2018, 34, 4793-4802.	3.5	11
296	Buckling of growing bacterial chains. Journal of the Mechanics and Physics of Solids, 2020, 145, 104146.	4.8	11
297	Extracellular Matrix Stiffness Regulates DNA Methylation by PKC α â€Đependent Nuclear Transport of DNMT3L. Advanced Healthcare Materials, 2021, 10, 2100821.	7.6	11
298	Surface effects on frequency dispersion characteristics of Lamb waves in a nanoplate. Thin Solid Films, 2020, 697, 137831.	1.8	11
299	Effective elastic moduli of polymer-layered silicate nanocomposites. Science Bulletin, 2001, 46, 1130-1133.	1.7	10
300	Boundary layers near interfaces between crystals with strain gradient effects. Mechanics Research Communications, 2001, 28, 87-95.	1.8	10
301	Determining the elastic modulus of thin films using a buckling-based method: computational study. Journal Physics D: Applied Physics, 2009, 42, 175506.	2.8	10
302	Fracture mechanics analysis on Smart-Cut® technology. Part 1: Effects of stiffening wafer and defect interaction. Acta Mechanica Sinica/Lixue Xuebao, 2009, 25, 73-81.	3.4	10
303	Indentation method for measuring the viscoelastic kernel function of nonlinear viscoelastic soft materials. Journal of Materials Research, 2013, 28, 806-816.	2.6	10
304	Tissue–Growth Model for the Swelling Analysis of Core–Shell Hydrogels. Soft Materials, 2013, 11, 117-124.	1.7	10
305	Radial wrinkles on film–substrate system induced by local prestretch: A theoretical analysis. International Journal of Solids and Structures, 2015, 58, 12-19.	2.7	10
306	Compressive behavior of crystalline nanoparticles with atomic-scale surface steps. Materials Research Express, 2015, 2, 015006.	1.6	10

#	Article	IF	CITATIONS
307	Chirality-dependent flutter of Typha blades in wind. Scientific Reports, 2016, 6, 28907.	3.3	10
308	Surface effects on nanoindentation of soft solids by different indenters. Materials Research Express, 2016, 3, 115021.	1.6	10
309	Molecular Dynamics Simulation on Hydrogen Ion Implantation Process in Smart-Cut Technology. Acta Mechanica Solida Sinica, 2016, 29, 111-119.	1.9	10
310	Collective oscillation in dense suspension of self-propelled chiral rods. Soft Matter, 2019, 15, 2999-3007.	2.7	10
311	In-plane compressive behavior of graphene-coated aluminum nano-honeycombs. Computational Materials Science, 2019, 156, 396-403.	3.0	10
312	Buckling-regulated bandgaps of soft metamaterials with chiral hierarchical microstructure. Extreme Mechanics Letters, 2021, 43, 101166.	4.1	10
313	Phototactic Miniature Soft Robots with Terrain Adaptability. Advanced Materials Technologies, 2022, 7, .	5.8	10
314	Fracture mechanics analysis of three-dimensional ion cut technology. Journal of Mechanics of Materials and Structures, 2007, 2, 1831-1852.	0.6	9
315	Spinodal surface instability of soft elastic thin films. Acta Mechanica Sinica/Lixue Xuebao, 2008, 24, 289-296.	3.4	9
316	Influence of residual thermal stresses and geometric parameters on stress and electric fields in multilayer ceramic capacitors under electric bias. Journal Physics D: Applied Physics, 2008, 41, 135310.	2.8	9
317	Biaxial stress controlled three-dimensional helical cracks. NPG Asia Materials, 2012, 4, e14-e14.	7.9	9
318	Chirality Induced by Structural Transformation in a Tensegrity: Theory and Experiment. Journal of Applied Mechanics, Transactions ASME, 2016, 83, .	2.2	9
319	Edge wrinkling of a soft ridge with gradient thickness. Applied Physics Letters, 2017, 110, .	3.3	9
320	Shear horizontal wave dispersion in nanolayers with surface effects and determination of surface elastic constants. Thin Solid Films, 2018, 645, 134-138.	1.8	9
321	Swertia mussotii extracts induce mitochondria-dependent apoptosis in gastric cancer cells. Biomedicine and Pharmacotherapy, 2018, 104, 603-612.	5.6	9
322	Multiscale fracture mechanics model for the dorsal closure in Drosophila embryogenesis. Journal of the Mechanics and Physics of Solids, 2019, 127, 154-166.	4.8	9
323	Length Scale Effect in Frictional Aging of Silica Contacts. Physical Review Letters, 2020, 125, 215502.	7.8	9
324	Switchable adhesion with a high tuning ratio achieved on polymer surfaces with embedded low-melting-point alloy. Extreme Mechanics Letters, 2021, 49, 101488.	4.1	9

#	Article	IF	CITATIONS
325	Three-Dimensional Micromechanical Model for Quasi-Brittle Solids with Residual Strains under Tension. International Journal of Damage Mechanics, 2000, 9, 79-110.	4.2	9
326	Effect of Mechanical Milling on Photoluminescence of \hat{I}^3 -Alumina Nanoparticles. Journal of Nanoscience and Nanotechnology, 2008, 8, 1414-1416.	0.9	8
327	Instability of electrowetting on a dielectric substrate. Journal of Applied Physics, 2011, 109, 034309.	2.5	8
328	A facile method to realize perfectly matched layers for elastic waves. Wave Motion, 2014, 51, 1170-1178.	2.0	8
329	Effects of surface atomistic modification on mechanical properties of gold nanowires. Physics Letters, Section A: General, Atomic and Solid State Physics, 2015, 379, 1893-1897.	2.1	8
330	Micromechanics methods for evaluating the effective moduli of soft neo-Hookean composites. Archive of Applied Mechanics, 2016, 86, 219-234.	2.2	8
331	Line tension effects on the wetting of nanostructures: an energy method. Nanotechnology, 2017, 28, 384001.	2.6	8
332	Preface: molecular, cellular, and tissue mechanobiology. Acta Mechanica Sinica/Lixue Xuebao, 2017, 33, 219-221.	3.4	8
333	Phase transition and optimal actuation of active bilayer structures. Extreme Mechanics Letters, 2019, 29, 100467.	4.1	8
334	A micromechanical model of tendon and ligament with crimped fibers. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 112, 104086.	3.1	8
335	Mesoscopic dynamic model of epithelial cell division with cell-cell junction effects. Physical Review E, 2020, 102, 012405.	2.1	8
336	Deep learning method for predicting the mechanical properties of aluminum alloys with small data sets. Materials Today Communications, 2021, 28, 102570.	1.9	8
337	A micromechanics model for estimating the effective thermoelastic properties of layered media. Composites Science and Technology, 2002, 62, 441-449.	7.8	7
338	Constitutive Relations of Ferroelectric Ceramics with Electric Fatigue Effects. Chinese Physics Letters, 2006, 23, 1911-1914.	3.3	7
339	A simple constitutive model for ferroelectric ceramics under electrical/mechanical loading. Acta Mechanica Solida Sinica, 2007, 20, 1-12.	1.9	7
340	Morphological instability of spherical soft particles induced by surface charges. Applied Physics Letters, 2009, 95, 021903.	3.3	7
341	Surface effects on the superelasticity of nanohelices. Journal of Physics Condensed Matter, 2012, 24, 265303.	1.8	7
342	Influence of surface tension on fractal contact model. Journal of Applied Physics, 2014, 115, .	2.5	7

#	Article	IF	CITATIONS
343	Atomic Structure and Energy Distribution of Collapsed Carbon Nanotubes of Different Chiralities. Journal of Nanomaterials, 2015, 2015, 1-5.	2.7	7
344	An Experimental Study of Deep Brain Stimulation Lead Fracture: Possible Fatigue Mechanisms and Prevention Approach. Neuromodulation, 2015, 18, 243-248.	0.8	7
345	High-speed spinning disks on flexible threads. Scientific Reports, 2017, 7, 13111.	3.3	7
346	Micropipette aspiration method for characterizing biological materials with surface energy. Journal of Biomechanics, 2018, 80, 32-36.	2.1	7
347	Mechanical characterization of the key portions in locust semi-lunar processes under different strain rates. Journal of Biomechanics, 2019, 95, 109314.	2.1	7
348	Heat Stress-Induced Multiple Multipolar Divisions of Human Cancer Cells. Cells, 2019, 8, 888.	4.1	7
349	Regulating wrinkling patterns by periodic surface stiffness in film-substrate structures. Science China Technological Sciences, 2019, 62, 747-754.	4.0	7
350	Three-dimensional collective cell motions in an acinus-like lumen. Journal of Biomechanics, 2019, 84, 234-242.	2.1	7
351	Static and dynamic properties of pre-twisted leaves and stalks with varying chiral morphologies. Extreme Mechanics Letters, 2020, 34, 100612.	4.1	7
352	Measurement of the interconnected turgor pressure and envelope elasticity of live bacterial cells. Soft Matter, 2021, 17, 2042-2049.	2.7	7
353	Defect nucleation in SOI wafers due to hydrogen ion implantation. Theoretical and Applied Fracture Mechanics, 2004, 42, 295-301.	4.7	6
354	On determination of the damping factor of linear viscoelastic materials using dynamic indentation: a theoretical study. Science China: Physics, Mechanics and Astronomy, 2011, 54, 598-605.	5.1	6
355	Mode-I pullout model of nanofibers with surface effects. Engineering Fracture Mechanics, 2015, 150, 115-125.	4.3	6
356	Reduced graphene oxide/silver hybrid with N,N-dimethyl formamide for oxygen reduction reactions and surface enhanced Raman scattering. RSC Advances, 2016, 6, 102519-102527.	3.6	6
357	Pump drill: A superb device for converting translational motion into high-speed rotation. Extreme Mechanics Letters, 2017, 16, 56-63.	4.1	6
358	Low velocity impact of a nanoparticle on a rectangular nanoplate: A theoretical study. International Journal of Mechanical Sciences, 2017, 123, 253-259.	6.7	6
359	Torsion Instability of Anisotropic Cylindrical Tissues with Growth. Acta Mechanica Solida Sinica, 2019, 32, 621-632.	1.9	6
360	3D-printed biomimetic surface structures with abnormal friction properties. Extreme Mechanics Letters, 2019, 26, 46-52.	4.1	6

#	Article	IF	CITATIONS
361	Morphomechanics of tumors. Current Opinion in Biomedical Engineering, 2020, 15, 51-58.	3.4	6
362	Biomechanics in "Sino-Italian Joint― Acta Mechanica Sinica/Lixue Xuebao, 2021, 37, 169-172.	3.4	6
363	Tuning frictional properties of molecularly thin erucamide films through controlled self-assembling. Acta Mechanica Sinica/Lixue Xuebao, 2021, 37, 1041-1049.	3.4	6
364	Effective elastic moduli and interface effects of nanocrystal-line materials. Science Bulletin, 2002, 47, 1493.	1.7	5
365	Simulation of adatom clustering on a stepped surface. Philosophical Magazine Letters, 2006, 86, 277-289.	1.2	5
366	Damage model of bone under mechanical and electromagnetic loadings. Computational Materials Science, 2012, 57, 89-93.	3.0	5
367	Buoyancy of a Thin Plate Pressing a Floating Oil Film on Water. Langmuir, 2013, 29, 6562-6572.	3.5	5
368	Frequency dispersion of love waves in a piezoelectric nanofilm bonded on a semi-infinite elastic substrate. Chinese Journal of Mechanical Engineering (English Edition), 2015, 28, 1157-1162.	3.7	5
369	Wrinkling of thin films on a microstructured substrate. Mechanics of Advanced Materials and Structures, 2018, 25, 975-981.	2.6	5
370	A cell-based model for analyzing growth and invasion of tumor spheroids. Science China Technological Sciences, 2019, 62, 1341-1348.	4.0	5
371	On the robustness of spider capture silk's adhesion. Extreme Mechanics Letters, 2019, 29, 100477.	4.1	5
372	Droplet Precise Self‧plitting on Patterned Adhesive Surfaces for Simultaneous Multidetection. Angewandte Chemie, 2020, 132, 10622-10626.	2.0	5
373	Dynamic intracellular mechanical cues facilitate collective signaling responses. IScience, 2021, 24, 102396.	4.1	5
374	AFM-based indentation method for measuring the relaxation property of living cells. Journal of Biomechanics, 2021, 122, 110444.	2.1	5
375	An energy-conservative many-body dissipative particle dynamics model for thermocapillary drop motion. Physics of Fluids, 2022, 34, .	4.0	5
376	Thermal Effects on Fracture of Piezoelectric Materials. Journal of Intelligent Material Systems and Structures, 2005, 16, 567-572.	2.5	4
377	Fracture mechanics analysis on Smart-Cut® technology. Part 2: Effect of bonding flaws. Acta Mechanica Sinica/Lixue Xuebao, 2009, 25, 197-203.	3.4	4
378	Normal impact of adhesive microparticles with a film/substrate system: A numerical study. Computational Materials Science, 2012, 60, 130-136.	3.0	4

#	Article	IF	CITATIONS
379	Self-assembly of lipids and nanoparticles in aqueous solution: Self-consistent field simulations. Theoretical and Applied Mechanics Letters, 2012, 2, 014004.	2.8	4
380	Dislocation-templated amorphization of Ge2Sb2Te5 nanowires under electric pulses: A theoretical model. Journal of Applied Physics, 2013, 113, 243507.	2.5	4
381	Determination of the Reduced Creep Function of Viscoelastic Compliant Materials Using Pipette Aspiration Method. Journal of Applied Mechanics, Transactions ASME, 2014, 81, .	2.2	4
382	Indentation-triggered pattern transformation in hyperelastic soft cellular solids. Comptes Rendus - Mecanique, 2014, 342, 292-298.	2.1	4
383	Tension-compression asymmetry in the binding affinity of membrane-anchored receptors and ligands. Physical Review E, 2016, 93, 032411.	2.1	4
384	Microbead-regulated surface wrinkling patterns in a film–substrate system. Applied Physics Letters, 2017, 111, .	3.3	4
385	A finite-strain micromechanical model for the hyperelasticity of tendons and ligaments with crimped fibers. Mechanics of Materials, 2021, 160, 103955.	3.2	4
386	Multi-functional topology optimization of <i>Victoria cruziana</i> veins. Journal of the Royal Society Interface, 2022, 19, .	3.4	4
387	Anti-plane Yoffe Moving Crack Problem in Isotropic Functionally Graded Materials. Journal of Reinforced Plastics and Composites, 2007, 26, 127-137.	3.1	3
388	Morphological stability analysis of vesicles with mechanical–electrical coupling effects. Acta Mechanica Sinica/Lixue Xuebao, 2010, 26, 5-11.	3.4	3
389	Chemisorption-Induced Resonance Frequency Shift of a Microcantilever. Chinese Physics Letters, 2012, 29, 056801.	3.3	3
390	Time-Independent Plasticity Related to Critical Point of Free Energy Function and Functional. Journal of Engineering Materials and Technology, Transactions of the ASME, 2014, 136, .	1.4	3
391	Geometric Confinement Guides the Expression of Cancer Stem Cell Molecular Markers CD44 via Cell Traction Forces. ACS Biomaterials Science and Engineering, 2020, 6, 4623-4630.	5.2	3
392	A function of fascin1 in the colony formation of mouse embryonic stem cells. Stem Cells, 2020, 38, 1078-1090.	3.2	3
393	Influence of Considering the Sorption Effect in the Betti-Maxwell Reciprocal Theorem on Gas Transport Capacity in Unconventional Reservoirs. Transport in Porous Media, 2021, 137, 451-469.	2.6	3
394	Collective migrations in an epithelial–cancerous cell monolayer. Acta Mechanica Sinica/Lixue Xuebao, 2021, 37, 773-784.	3.4	3
395	EML webinar overview: Dynamics of collective cells. Extreme Mechanics Letters, 2021, 44, 101255.	4.1	3
396	Preface: Mechanics of soft materials and flexible structures. Acta Mechanica Sinica/Lixue Xuebao, 2021, 37, 746-747.	3.4	3

#	Article	IF	CITATIONS
397	Hypertonic pressure affects the pluripotency and self-renewal of mouse embryonic stem cells. Stem Cell Research, 2021, 56, 102537.	0.7	3
398	Experimental and theoretical studies on the dynamic landing of water striders on water. Soft Matter, 2022, 18, 3575-3582.	2.7	3
399	Radial wrinkling of viscoelastic film-substrate systems. International Journal of Solids and Structures, 2022, 249, 111689.	2.7	3
400	Strain gradient near interface of coaxial cylinders in torsion. Theoretical and Applied Fracture Mechanics, 2001, 36, 195-202.	4.7	2
401	Elastic Analysis of Physisorption-Induced Substrate Deformation. Chinese Physics Letters, 2008, 25, 205-208.	3.3	2
402	Thermal Effects of Ferroelectric/Magnetic Materials Under Cyclic-Electric Loading. Journal of Thermal Stresses, 2008, 32, 149-164.	2.0	2
403	Monte Carlo Form-Finding Method for Tensegrity Structures. , 2010, , .		2
404	Steered Molecular Dynamics Simulations on the Peeling and Shearing of Carbon Nanotubes on a Silicon Substrate. Journal of Nanoscience and Nanotechnology, 2013, 13, 5374-5381.	0.9	2
405	Surface effects on the persistence length of nanowires and nanotubes. Theoretical and Applied Mechanics Letters, 2014, 4, 051009.	2.8	2
406	Towards understanding elastocapillarity: comparing wetting of soft and rigid plates. Journal of Physics Condensed Matter, 2014, 26, 155105.	1.8	2
407	Mechanical Behavior of Nanostructured Materials. Journal of Nanomaterials, 2015, 2015, 1-2.	2.7	2
408	Interaction between an edge dislocation and a bridged crack with surface elasticity. Archive of Applied Mechanics, 2017, 87, 1739-1768.	2.2	2
409	Transient Response of a Circular Nanoplate Subjected to Low Velocity Impact. International Journal of Applied Mechanics, 2017, 09, 1750114.	2.2	2
410	Enumeration–screening method for the design of simple polygonal tensegrities. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2019, 475, 20180812.	2.1	2
411	Coupling analysis of screwing motion of double-walled carbon nanotubes. Physics Letters, Section A: General, Atomic and Solid State Physics, 2019, 383, 2309-2313.	2.1	2
412	Evaporation of liquid nanofilms: A minireview. Physics of Fluids, 2022, 34, 021302.	4.0	2
413	Surface effect on the necking of hyperelastic materials. Current Applied Physics, 2022, 38, 91-98.	2.4	2
414	Electrochemically synthesized polythiophene films with self-organized microstructure. Polymer Engineering and Science, 2003, 43, 919-922.	3.1	1

#	Article	lF	CITATIONS
415	A triggering criterion of dislocation sources under Mode-I singular stresses. International Journal of Fracture, 2004, 126, 281-286.	2.2	1
416	Effects of dislocation configuration, crack blunting and free surfaces on the triggering load of dislocation sources. Acta Mechanica Solida Sinica, 2007, 20, 103-109.	1.9	1
417	On the applicability of carbon nanotubes as nanomechanical probes and manipulators. Nanotechnology, 2012, 23, 415502.	2.6	1
418	Deformation analysis of vesicles in an alternating-current electric field. Physical Review E, 2014, 90, 022709.	2.1	1
419	Response to "Comment on †Disentangling longitudinal and shear elastic waves by neo-Hookean soft devices'―[Appl. Phys. Lett. 107 , 056101 (2015)]. Applied Physics Letters, 2015, 107, .	3.3	1
420	Time-Independent Plasticity Based on Thermodynamic Equilibrium and Its Stability. Journal of Engineering Materials and Technology, Transactions of the ASME, 2015, 137, .	1.4	1
421	Bucklingâ€Induced Assembly of Threeâ€Dimensional Tunable Metamaterials (Phys. Status Solidi RRL 4/2018). Physica Status Solidi - Rapid Research Letters, 2018, 12, 1870314.	2.4	1
422	Bucklingâ€Induced Assembly of Threeâ€Dimensional Tunable Metamaterials. Physica Status Solidi - Rapid Research Letters, 2018, 12, 1700420.	2.4	1
423	Regional stretch method to measure the elastic and hyperelastic properties of soft materials. Science China: Physics, Mechanics and Astronomy, 2018, 61, 1.	5.1	1
424	Local Monte Carlo Method for Fatigue Analysis of Coarse-Grained Metals with a Nanograined Surface Layer. Metals, 2018, 8, 479.	2.3	1
425	The relation between the collective motility and shapes of human cancer cells under heat stress. Applied Physics Letters, 2020, 116, 043703.	3.3	1
426	Advances in collective cell dynamics. Chinese Science Bulletin, 2020, 65, 3100-3117.	0.7	1
427	Fluid–solid coupling dynamic model for oscillatory growth of multicellular lumens. Journal of Biomechanics, 2022, 131, 110937.	2.1	1
428	Molecular dynamics simulations of deformation and rupture of super carbon nanotubes under tension. Journal of Nanoscience and Nanotechnology, 2008, 8, 6274-82.	0.9	1
429	Atomic stick-slip friction as a two-dimensional thermally activated process. Physical Review B, 2022, 105, .	3.2	1
430	Extracting the properties of constituent phases from the overall response of composites: A deep neural network method. Composite Structures, 2022, , 115707.	5.8	1
431	An energy method for the bifurcation analysis of necking. Extreme Mechanics Letters, 2022, , 101793.	4.1	1
432	About the special topic of mechanics and biomimetics of biomaterials and animal locomotion. Acta Mechanica Sinica/Lixue Xuebao, 2010, 26, 3-4.	3.4	0

#	Article	IF	CITATIONS
433	Theoretical Analysis of Chemisorption-Induced Surface Stress. Advanced Materials Research, 0, 528, 229-232.	0.3	0
434	Deflection and Resonance Frequency Shift of a Microcantilever Induced by Chemisorption: Oxygen on Si(100). Advanced Materials Research, 2012, 503-504, 455-458.	0.3	0
435	Toward a probe-based method for determining exfoliation energies of lamellar materials. , 2012, , .		0
436	Chemisorption-induced microcantilever deflection: a theoretical model. Philosophical Magazine Letters, 2013, 93, 183-195.	1.2	0
437	Editorial: Recent advances in fracture research. Theoretical and Applied Mechanics Letters, 2014, 4, 041002.	2.8	0
438	MULTICALE MECHANICS OF BIOLOGICAL MATERIALS. , 2015, , 19-20.		0
439	Editorial to the Special Issue 50th Anniversary of EFM. Engineering Fracture Mechanics, 2018, 187, 16-21.	4.3	0
440	Rücktitelbild: Droplet Precise Selfâ€5plitting on Patterned Adhesive Surfaces for Simultaneous Multidetection (Angew. Chem. 26/2020). Angewandte Chemie, 2020, 132, 10754-10754.	2.0	0
441	Effects of damage on effective properties of piezoelectric composites. European Physical Journal Special Topics, 1999, 09, Pr9-197-Pr9-206.	0.2	0
442	10.1063/1.5128474.1., 2020, , .		0
443	Micromechanical method for determining the effective surface elastic modulus of solids with surface microstructures. Mechanics of Materials, 2022, 165, 104201.	3.2	0
444	Mechanical–electrochemical coupling theory of bacterial cells. International Journal of Solids and Structures, 2022, 252, 111804.	2.7	0