Rachel Lowe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9067235/publications.pdf

Version: 2024-02-01

168829 90395 6,658 85 31 73 citations h-index g-index papers 101 101 101 8414 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Co-learning during the co-creation of a dengue early warning system for the health sector in Barbados. BMJ Global Health, 2022, 7, e007842.	2.0	1
2	SARS-CoV-2 antibodies protect against reinfection for at least 6 months in a multicentre seroepidemiological workplace cohort. PLoS Biology, 2022, 20, e3001531.	2.6	10
3	Measuring the effects of COVID-19-related disruption on dengue transmission in southeast Asia and Latin America: a statistical modelling study. Lancet Infectious Diseases, The, 2022, 22, 657-667.	4.6	68
4	Tracking the impacts of climate change on human health via indicators: lessons from the Lancet Countdown. BMC Public Health, 2022, 22, 663.	1.2	20
5	Climate-sensitive disease outbreaks in the aftermath of extreme climatic events: A scoping review. One Earth, 2022, 5, 336-350.	3.6	16
6	The 2018–2019 weak El Niño: Predicting the risk of a dengue outbreak in Machala, Ecuador. International Journal of Climatology, 2021, 41, 3813-3823.	1.5	9
7	The 2020 report of The Lancet Countdown on health and climate change: responding to converging crises. Lancet, The, 2021, 397, 129-170.	6. 3	1,030
8	Epidemiological, socio-demographic and clinical features of the early phase of the COVID-19 epidemic in Ecuador. PLoS Neglected Tropical Diseases, 2021, 15, e0008958.	1.3	94
9	The impact of non-pharmaceutical interventions on SARS-CoV-2 transmission across 130 countries and territories. BMC Medicine, 2021, 19, 40.	2.3	257
10	Probabilistic seasonal dengue forecasting in Vietnam: A modelling study using superensembles. PLoS Medicine, 2021, 18, e1003542.	3.9	35
11	Effects of Hot Nights on Mortality in Southern Europe. Epidemiology, 2021, 32, 487-498.	1.2	45
12	Combined effects of hydrometeorological hazards and urbanisation on dengue risk in Brazil: a spatiotemporal modelling study. Lancet Planetary Health, The, 2021, 5, e209-e219.	5.1	67
13	Testing for SARS-CoV-2 at the core of voluntary collective isolation: Lessons from the indigenous populations living in the Amazon region in Ecuador. International Journal of Infectious Diseases, 2021, 105, 234-235.	1.5	12
14	Climate services for health: From global observations to local interventions. Med, 2021, 2, 355-361.	2.2	3
15	Spatial connectivity in mosquito-borne disease models: a systematic review of methods and assumptions. Journal of the Royal Society Interface, 2021, 18, 20210096.	1.5	12
16	Estimating the duration of seropositivity of human seasonal coronaviruses using seroprevalence studies. Wellcome Open Research, 2021, 6, 138.	0.9	3
17	Projecting the risk of mosquito-borne diseases in a warmer and more populated world: a multi-model, multi-scenario intercomparison modelling study. Lancet Planetary Health, The, 2021, 5, e404-e414.	5.1	165
18	Exceptional Prices of Medical and Other Supplies during the COVID-19 Pandemic in Ecuador. American Journal of Tropical Medicine and Hygiene, 2021, 105, 81-87.	0.6	5

#	Article	IF	CITATIONS
19	Transmission modelling of environmentally persistent zoonotic diseases: a systematic review. Lancet Planetary Health, The, 2021, 5, e466-e478.	5.1	19
20	Epidemiological versus meteorological forecasts: Best practice for linking models to policymaking. International Journal of Forecasting, 2021, 38, 521-521.	3.9	0
21	Tracking progress on health and climate change in Europe. Lancet Public Health, The, 2021, 6, e858-e865.	4.7	30
22	Malaria in Southern Venezuela: The hottest hotspot in Latin America. PLoS Neglected Tropical Diseases, 2021, 15, e0008211.	1.3	33
23	Digital and technological innovation in vector-borne disease surveillance to predict, detect, and control climate-driven outbreaks. Lancet Planetary Health, The, 2021, 5, e739-e745.	5.1	22
24	The 2021 report of the Lancet Countdown on health and climate change: code red for a healthy future. Lancet, The, 2021, 398, 1619-1662.	6.3	669
25	Recommended reporting items for epidemic forecasting and prediction research: The EPIFORGE 2020 guidelines. PLoS Medicine, 2021, 18, e1003793.	3.9	42
26	A cross-sectional analysis of meteorological factors and SARS-CoV-2 transmission in 409 cities across 26 countries. Nature Communications, 2021, 12, 5968.	5.8	66
27	The impact of climate suitability, urbanisation, and connectivity on the expansion of dengue in 21st century Brazil. PLoS Neglected Tropical Diseases, 2021, 15, e0009773.	1.3	22
28	Title is missing!. , 2021, 15, e0008958.		0
29	Title is missing!. , 2021, 15, e0008958.		0
30	Title is missing!. , 2021, 15, e0008958.		0
31	Title is missing!. , 2021, 15, e0008958.		0
32	Title is missing!. , 2021, 15, e0008958.		0
33	Title is missing!. , 2021, 15, e0008958.		0
34	Title is missing!. , 2021, 15, e0008958.		0
35	Title is missing!. , 2021, 15, e0008958.		0
36	Childhood malaria case incidence in Malawi between 2004 and 2017: spatio-temporal modelling of climate and non-climate factors. Malaria Journal, 2020, 19, 5.	0.8	18

#	Article	IF	Citations
37	The impact of COVID-19 control measures on social contacts and transmission in Kenyan informal settlements. BMC Medicine, 2020, 18, 316.	2.3	88
38	Emerging arboviruses in the urbanized Amazon rainforest. BMJ, The, 2020, 371, m4385.	3.0	32
39	Using a real-world network to model localized COVID-19 control strategies. Nature Medicine, 2020, 26, 1616-1622.	15.2	191
40	The COVID-19 pandemic should not derail global vector control efforts. PLoS Neglected Tropical Diseases, 2020, 14, e0008606.	1.3	17
41	The Relative Role of Climate Variation and Control Interventions on Malaria Elimination Efforts in El Oro, Ecuador: A Modeling Study. Frontiers in Environmental Science, 2020, 8, .	1.5	9
42	Tracking infectious diseases in a warming world. BMJ, The, 2020, 371, m3086.	3.0	5
43	Planting sustainable seeds in young minds: the need to teach planetary health to children. Lancet Planetary Health, The, 2020, 4, e501-e502.	5.1	16
44	Effective transmission across the globe: the role of climate in COVID-19 mitigation strategies. Lancet Planetary Health, The, 2020, 4, e172.	5.1	84
45	Climate factors and the East Asian summer monsoon may drive large outbreaks of dengue in China. Environmental Research, 2020, 183, 109190.	3.7	36
46	Strengthening the global response to climate change and infectious disease threats. BMJ, The, 2020, 371, m3081.	3.0	31
47	Building resilience to mosquito-borne diseases in the Caribbean. PLoS Biology, 2020, 18, e3000791.	2.6	12
48	Spatiotemporal Tools for Emerging and Endemic Disease Hotspots in Small Areas: An Analysis of Dengue and Chikungunya in Barbados, 2013–2016. American Journal of Tropical Medicine and Hygiene, 2020, 103, 149-156.	0.6	14
49	Space–time dynamics of a triple epidemic: dengue, chikungunya and Zika clusters in the city of Rio de Janeiro. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20191867.	1.2	33
50	The 2019 report of The Lancet Countdown on health and climate change: ensuring that the health of a child born today is not defined by a changing climate. Lancet, The, 2019, 394, 1836-1878.	6.3	905
51	Co-developing climate services for public health: Stakeholder needs and perceptions for the prevention and control of Aedes-transmitted diseases in the Caribbean. PLoS Neglected Tropical Diseases, 2019, 13, e0007772.	1.3	20
52	Estimating the burden of dengue and the impact of release of wMel Wolbachia-infected mosquitoes in Indonesia: a modelling study. BMC Medicine, 2019, 17, 172.	2.3	38
53	Sensitivity of large dengue epidemics in Ecuador to long-lead predictions of El Niño. Climate Services, 2019, 15, 100096.	1.0	7
54	Assessing the performance of real-time epidemic forecasts: A case study of Ebola in the Western Area region of Sierra Leone, 2014-15. PLoS Computational Biology, 2019, 15, e1006785.	1.5	74

#	Article	IF	CITATIONS
55	An open challenge to advance probabilistic forecasting for dengue epidemics. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24268-24274.	3.3	136
56	Development, environmental degradation, and disease spread in the Brazilian Amazon. PLoS Biology, 2019, 17, e3000526.	2.6	45
57	Desirable BUGS in models of infectious diseases. Epidemics, 2019, 29, 100361.	1.5	3
58	Predicting Climate Impacts on Health at Sub-seasonal to Seasonal Timescales. , 2019, , 455-477.		6
59	The 2018 report of the Lancet Countdown on health and climate change: shaping the health of nations for centuries to come. Lancet, The, 2018, 392, 2479-2514.	6.3	595
60	Projecting the end of the Zika virus epidemic in Latin America: a modelling analysis. BMC Medicine, 2018, 16, 180.	2.3	53
61	Nonlinear and delayed impacts of climate on dengue risk in Barbados: A modelling study. PLoS Medicine, 2018, 15, e1002613.	3.9	135
62	The Zika Virus Epidemic in Brazil: From Discovery to Future Implications. International Journal of Environmental Research and Public Health, 2018, 15, 96.	1.2	254
63	Climate services for health: predicting the evolution of the 2016 dengue season in Machala, Ecuador. Lancet Planetary Health, The, 2017, 1, e142-e151.	5.1	97
64	Evaluation of an Early-Warning System for Heat Wave-Related Mortality in Europe: Implications for Sub-seasonal to Seasonal Forecasting and Climate Services. International Journal of Environmental Research and Public Health, 2016, 13, 206.	1.2	39
65	Seasonal forecasting and health impact models: challenges and opportunities. Annals of the New York Academy of Sciences, 2016, 1382, 8-20.	1.8	15
66	Modelling Climate-Sensitive Disease Risk: A Decision Support Tool for Public Health Services. Advances in Natural and Technological Hazards Research, 2016, , 115-130.	1.1	1
67	Quantifying the added value of climate information in a spatio-temporal dengue model. Stochastic Environmental Research and Risk Assessment, 2016, 30, 2067-2078.	1.9	44
68	Barriers to Using Climate Information: Challenges in Communicating Probabilistic Forecasts to Decision-Makers. Advances in Natural and Technological Hazards Research, 2016, , 95-113.	1.1	12
69	Evaluating probabilistic dengue risk forecasts from a prototype early warning system for Brazil. ELife, 2016, 5, .	2.8	57
70	Evaluating the Performance of a Climate-Driven Mortality Model during Heat Waves and Cold Spells in Europe. International Journal of Environmental Research and Public Health, 2015, 12, 1279-1294.	1.2	25
71	Understanding the relative importance of global dengue risk factors. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2015, 109, 607-608.	0.7	3
72	Interpretation of probabilistic forecasts of epidemics. Lancet Infectious Diseases, The, 2015, 15, 20.	4.6	4

#	Article	IF	Citations
73	Dengue and the World Football Cup: A Matter of Timing. PLoS Neglected Tropical Diseases, 2014, 8, e3022.	1.3	3
74	Expansion of the dengue transmission area in <scp>B</scp> razil: the role of climate and cities. Tropical Medicine and International Health, 2014, 19, 159-168.	1.0	49
75	An agent-based model driven by tropical rainfall to understand the spatio-temporal heterogeneity of a chikungunya outbreak. Acta Tropica, 2014, 129, 61-73.	0.9	33
76	Dengue outlook for the World Cup in Brazil: an early warning model framework driven by real-time seasonal climate forecasts. Lancet Infectious Diseases, The, 2014, 14, 619-626.	4.6	108
77	Using Structured Additive Regression Models to Estimate Risk Factors of Malaria: Analysis of 2010 Malawi Malaria Indicator Survey Data. PLoS ONE, 2014, 9, e101116.	1.1	22
78	Climate and Non-Climate Drivers of Dengue Epidemics in Southern Coastal Ecuador. American Journal of Tropical Medicine and Hygiene, 2013, 88, 971-981.	0.6	127
79	The development of an early warning system for climateâ€sensitive disease risk with a focus on dengue epidemics in Southeast Brazil. Statistics in Medicine, 2013, 32, 864-883.	0.8	107
80	Relative importance of climatic, geographic and socio-economic determinants of malaria in Malawi. Malaria Journal, 2013, 12, 416.	0.8	70
81	On the visualization, verification and recalibration of ternary probabilistic forecasts. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2012, 370, 1100-1120.	1.6	23
82	Spatio-temporal modelling of climate-sensitive disease risk: Towards an early warning system for dengue in Brazil. Computers and Geosciences, 2011, 37, 371-381.	2.0	135
83	Climate change and health in Southeast Asia – defining research priorities and the role of the Wellcome Trust Africa Asia Programmes. Wellcome Open Research, 0, 6, 278.	0.9	2
84	Estimating the duration of seropositivity of human seasonal coronaviruses using seroprevalence studies. Wellcome Open Research, 0, 6, 138.	0.9	5
85	Estimating the duration of seropositivity of human seasonal coronaviruses using seroprevalence studies. Wellcome Open Research, 0, 6, 138.	0.9	3