Dongha Shin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9067208/publications.pdf

Version: 2024-02-01

840776 677142 22 518 11 22 citations h-index g-index papers 22 22 22 831 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Sorting Gold and Sand (Silica) Using Atomic Force Microscope-Based Dielectrophoresis. Nano-Micro Letters, 2022, 14, 13.	27.0	3
2	Initial growth dynamics of 10Ânm nanobubbles in the graphene liquid cell. Applied Nanoscience (Switzerland), 2021, 11, 1-7.	3.1	17
3	Gold nanoparticle-mediated non-covalent functionalization of graphene for field-effect transistors. Nanoscale Advances, 2021, 3, 1404-1412.	4.6	8
4	Exploring the Hydration Water Character on Atomically Dislocated Surfaces by Surface Enhanced Raman Spectroscopy. ACS Central Science, 2020, 6, 2079-2087.	11.3	2
5	Sub-nanoscale probing of nanojunction using heterogeneous gap-mode Raman spectroscopy. Chemical Communications, 2020, 56, 4047-4050.	4.1	1
6	Ice-VII-like molecular structure of ambient water nanomeniscus. Nature Communications, 2019, 10, 286.	12.8	29
7	Heterogeneous gap-mode nanostructure for surface-enhanced Raman spectroscopic evaluation of charge transfer between noble metal nanoparticles and formaldehyde vapor. Nanoscale, 2018, 10, 19478-19483.	5.6	1
8	Graphene-Enhanced Raman Spectroscopy Reveals the Controlled Photoreduction of Nitroaromatic Compound on Oxidized Graphene Surface. ACS Omega, 2018, 3, 11084-11087.	3. 5	6
9	Two different behaviors in 4-ABT and 4,4′-DMAB surface enhanced Raman spectroscopy. Journal of Raman Spectroscopy, 2017, 48, 343-347.	2.5	8
10	Organic vapor-modulated surface enhanced Raman scattering spectroscopy. RSC Advances, 2016, 6, 58694-58697.	3.6	1
11	Graphene-catalyzed photoreduction of dye molecules revealed by graphene enhanced Raman spectroscopy. Physical Chemistry Chemical Physics, 2016, 18, 3413-3415.	2.8	5
12	Growth dynamics and gas transport mechanism of nanobubbles in graphene liquid cells. Nature Communications, 2015, 6, 6068.	12.8	136
13	Graphene oxide catalyzed cis-trans isomerization of azobenzene. APL Materials, 2014, 2, .	5.1	7
14	Surface-enhanced Raman scattering of $4,4\hat{a}\in^2$ -dimercaptoazobenzene trapped in Au nanogaps. Physical Chemistry Chemical Physics, 2012, 14, 4095.	2.8	41
15	Surface-Enhanced Raman Scattering of 4-Aminobenzenethiol on Ag and Au: pH Dependence of <i>b</i> ₂ -Type Bands. Journal of Physical Chemistry C, 2012, 116, 4774-4779.	3.1	86
16	Surface potential variation of gold nanoparticles by organic vapors revealed by Raman scattering of 1,4â€phenylenediisocyanide. Journal of Raman Spectroscopy, 2012, 43, 1427-1431.	2.5	3
17	Surface-Enhanced Raman Scattering Characteristics of 4-Aminobenzenethiol Derivatives Adsorbed on Silver. Journal of Physical Chemistry C, 2011, 115, 24960-24966.	3.1	53
18	Surfaceâ€enhanced Raman scattering of 4â€aminobenzenethiol on silver: confirmation of the origin of b ₂ â€type bands. Journal of Raman Spectroscopy, 2011, 42, 2112-2118.	2. 5	30

#	Article	IF	CITATIONS
19	Adsorbateâ€Induced Changes in Surface Potential of Gold Nanoparticles Revealed by Raman Spectroscopy. ChemPhysChem, 2010, 11, 83-86.	2.1	17
20	Surface Potential of Au Nanoparticles Affected by Layer-by-Layer Deposition of Polyelectrolytes: A Surface-Enhanced Raman Scattering Study. Journal of Physical Chemistry C, 2010, 114, 9917-9922.	3.1	16
21	Electromagnetic field enhancement in the gap between two Au nanoparticles: the size of hot site probed by surface-enhanced Raman scattering. Physical Chemistry Chemical Physics, 2010, 12, 3747.	2.8	35
22	Effect of polar organic vapors on surface potential of Au nanoparticle aggregates probed by surface-enhanced Raman scattering of 2,6-dimethylphenylisocyanide. Chemical Communications, 2010, 46, 3753.	4.1	13