
Michael S Kinch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9067066/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An analysis of FDA-approved drugs: natural products and their derivatives. Drug Discovery Today, 2016, 21, 204-207.	3.2	572
2	Activation of EphA2 kinase suppresses integrin function and causes focal-adhesion-kinase dephosphorylation. Nature Cell Biology, 2000, 2, 62-69.	4.6	515
3	Tyrosine phosphorylation regulates the adhesions of ras-transformed breast epithelia Journal of Cell Biology, 1995, 130, 461-471.	2.3	278
4	EphA2 Expression Is Associated with Aggressive Features in Ovarian Carcinoma. Clinical Cancer Research, 2004, 10, 5145-5150.	3.2	197
5	An overview of FDA-approved new molecular entities: 1827–2013. Drug Discovery Today, 2014, 19, 1033-1039.	3.2	181
6	Predictive value of the EphA2 receptor tyrosine kinase in lung cancer recurrence and survival. Clinical Cancer Research, 2003, 9, 613-8.	3.2	168
7	Dynamic Interaction of PTPμ with Multiple Cadherins In Vivo. Journal of Cell Biology, 1998, 141, 287-296.	2.3	160
8	VE-cadherin regulates EphA2 in aggressive melanoma cells through a novel signaling pathway: Implications for vasculogenic mimicry. Cancer Biology and Therapy, 2006, 5, 228-233.	1.5	159
9	The Ras-related Protein Rheb Is Farnesylated and Antagonizes Ras Signaling and Transformation. Journal of Biological Chemistry, 1997, 272, 10608-10615.	1.6	158
10	Rho-stimulated Contractility Contributes to the Fibroblastic Phenotype of Ras-transformed Epithelial Cells. Molecular Biology of the Cell, 1997, 8, 2329-2344.	0.9	149
11	Antibody targeting of the EphA2 tyrosine kinase inhibits malignant cell behavior. Cancer Research, 2002, 62, 2840-7.	0.4	148
12	An overview of FDA-approved biologics medicines. Drug Discovery Today, 2015, 20, 393-398.	3.2	137
13	A Human Antibody–Drug Conjugate Targeting EphA2 Inhibits Tumor Growth <i>In vivo</i> . Cancer Research, 2008, 68, 9367-9374.	0.4	126
14	Activation of the EphA2 tyrosine kinase stimulates the MAP/ERK kinase signaling cascade. Oncogene, 2002, 21, 7690-7699.	2.6	125
15	Differential Regulation of EphA2 in Normal and Malignant Cells. American Journal of Pathology, 2003, 162, 1037-1042.	1.9	122
16	Overexpression and functional alterations of the EphA2 tyrosine kinase in cancer. Clinical and Experimental Metastasis, 2003, 20, 59-68.	1.7	120
17	Regulation of the EphA2 Kinase by the Low Molecular Weight Tyrosine Phosphatase Induces Transformation. Journal of Biological Chemistry, 2002, 277, 39274-39279.	1.6	119
18	Efficacy and Antivascular Effects of EphA2 Reduction With an Agonistic Antibody in Ovarian Cancer. Journal of the National Cancer Institute, 2006, 98, 1558-1570.	3.0	119

#	Article	IF	CITATIONS
19	An analysis of FDA-approved drugs for infectious disease: antibacterial agents. Drug Discovery Today, 2014, 19, 1283-1287.	3.2	117
20	Decreased tumorigenic potential of EphA2-overexpressing breast cancer cells following treatment with adenoviral vectors that express EphrinA1. Cancer Gene Therapy, 2004, 11, 757-766.	2.2	113
21	c-Cbl-dependent EphA2 protein degradation is induced by ligand binding. Molecular Cancer Research, 2002, 1, 79-87.	1.5	113
22	High-Level Expression of EphA2 Receptor Tyrosine Kinase in Prostatic Intraepithelial Neoplasia. American Journal of Pathology, 2003, 163, 2271-2276.	1.9	112
23	Tumor-Selective Response to Antibody-Mediated Targeting of αvβ3 Integrin in Ovarian Cancer. Neoplasia, 2008, 10, 1259-1267.	2.3	111
24	Disease stage variation in CD4+ and CD8+ T-cell reactivity to the receptor tyrosine kinase EphA2 in patients with renal cell carcinoma. Cancer Research, 2003, 63, 4481-9.	0.4	110
25	Expression of EphA2 and Ephrin A-1 in Carcinoma of the Urinary Bladder. Clinical Cancer Research, 2006, 12, 353-360.	3.2	109
26	EphA2 overexpression is associated with angiogenesis in ovarian cancer. Cancer, 2007, 109, 332-340.	2.0	105
27	TEL, a Putative Tumor Suppressor, Modulates Cell Growth and Cell Morphology of Ras-Transformed Cells While Repressing the Transcription of stromelysin-1. Molecular and Cellular Biology, 2000, 20, 5828-5839.	1.1	96
28	Selective Targeting and Potent Control of Tumor Growth Using an EphA2/CD3-Bispecific Single-Chain Antibody Construct. Cancer Research, 2007, 67, 3927-3935.	0.4	96
29	E-Cadherin Binding Modulates EGF Receptor Activation. Cell Communication and Adhesion, 2003, 10, 105-118.	1.0	91
30	Loss of 14-3-3 if in Prostate Cancer and Its Precursors. Clinical Cancer Research, 2004, 10, 3064-3068.	3.2	91
31	EphA2 as a target for ovarian cancer therapy. Expert Opinion on Therapeutic Targets, 2005, 9, 1179-1187.	1.5	89
32	Direct targeting of αvβ3 integrin on tumor cells with a monoclonal antibody, Abegrin™. Molecular Cancer Therapeutics, 2006, 5, 3122-3129.	1.9	89
33	Development of a broad-spectrum antiviral with activity against Ebola virus. Antiviral Research, 2009, 83, 245-251.	1.9	84
34	Predicting the sites of metastases from lung cancer using molecular biologic markers. Annals of Thoracic Surgery, 2001, 72, 1144-1148.	0.7	76
35	Differential EphA2 epitope display on normal versus malignant cells. Cancer Research, 2003, 63, 7907-12.	0.4	76
36	PC Cell-Derived Growth Factor Expression in Prostatic Intraepithelial Neoplasia and Prostatic Adenocarcinoma. Clinical Cancer Research, 2004, 10, 1333-1337.	3.2	75

#	Article	IF	CITATIONS
37	An analysis of FDA-approved drugs for oncology. Drug Discovery Today, 2014, 19, 1831-1835.	3.2	72
38	The use of Random Homozygous Gene Perturbation to identify novel host-oriented targets for influenza. Virology, 2009, 387, 473-481.	1.1	69
39	Expression of EphA2 is prognostic of disease-free interval and overall survival in surgically treated patients with renal cell carcinoma. Clinical Cancer Research, 2005, 11, 226-31.	3.2	66
40	Antiviral Activity of a Small-Molecule Inhibitor of Filovirus Infection. Antimicrobial Agents and Chemotherapy, 2010, 54, 2152-2159.	1.4	65
41	EphA2 overexpression decreases estrogen dependence and tamoxifen sensitivity. Cancer Research, 2003, 63, 3425-9.	0.4	56
42	EphA2 overexpression promotes ovarian cancer growth. Cancer Biology and Therapy, 2008, 7, 1098-1103.	1.5	54
43	An analysis of FDA-approved drugs for infectious disease: HIV/AIDS drugs. Drug Discovery Today, 2014, 19, 1510-1513.	3.2	54
44	Estrogen and Myc negatively regulate expression of the EphA2 tyrosine kinase. Journal of Cellular Biochemistry, 2002, 85, 714-720.	1.2	43
45	E-cadherin binding modulates EGF receptor activation. Cell Communication and Adhesion, 2003, 10, 105-18.	1.0	43
46	An analysis of original research contributions toward FDA-approved drugs. Drug Discovery Today, 2015, 20, 1182-1187.	3.2	42
47	FGI-104: a broad-spectrum small molecule inhibitor of viral infection. American Journal of Translational Research (discontinued), 2009, 1, 87-98.	0.0	38
48	E-Cadherin Engagement Stimulates Tyrosine Phosphorylation. Cell Adhesion and Communication, 1997, 4, 425-437.	1.7	37
49	Dual targeting of EphA2 and ER restores tamoxifen sensitivity in ER/EphA2-positive breast cancer. Breast Cancer Research and Treatment, 2011, 127, 375-384.	1.1	37
50	Antibody-Dependent Cell-Mediated Cytotoxicity Effector-Enhanced EphA2 Agonist Monoclonal Antibody Demonstrates Potent Activity against Human Tumors. Neoplasia, 2009, 11, 509-IN2.	2.3	35
51	The engagement of β1 integrins on promonocytic cells promotes phosphorylation of Syk and formation of a protein complex containing Lyn and β1 integrin. European Journal of Immunology, 1999, 29, 1426-1434.	1.6	30
52	EphA2 Induction of Fibronectin Creates a Permissive Microenvironment for Malignant Cells. Molecular Cancer Research, 2004, 2, 533-540.	1.5	30
53	Enhancement in Specific CD8+ T Cell Recognition of EphA2+ Tumors In Vitro and In Vivo after Treatment with Ligand Agonists. Journal of Immunology, 2008, 181, 7721-7727.	0.4	28
54	Food and microbiota in the FDA regulatory framework. Science, 2017, 357, 39-40.	6.0	28

#	Article	IF	CITATIONS
55	TEL, a Putative Tumor Suppressor, Induces Apoptosis and Represses Transcription of Bcl-XL. Journal of Biological Chemistry, 2003, 278, 46378-46386.	1.6	26
56	The rise (and decline?) of biotechnology. Drug Discovery Today, 2014, 19, 1686-1690.	3.2	26
57	Target selection for FDA-approved medicines. Drug Discovery Today, 2015, 20, 784-789.	3.2	25
58	A Mechanism for Trabecular Meshwork Cell Retraction: Ethacrynic Acid Initiates the Dephosphorylation of Focal Adhesion Proteins. Experimental Eye Research, 1997, 65, 471-483.	1.2	24
59	Trends in pharmaceutical targeting of clinical indications: 1930–2013. Drug Discovery Today, 2014, 19, 1682-1685.	3.2	23
60	Analysis of EphA2 expression and mutant p53 in ovarian carcinoma. Cancer Biology and Therapy, 2006, 5, 1357-1360.	1.5	22
61	An analysis of FDA-approved drugs for neurological disorders. Drug Discovery Today, 2015, 20, 1040-1043.	3.2	22
62	2016 in review: FDA approvals of new molecular entities. Drug Discovery Today, 2017, 22, 1593-1597.	3.2	22
63	2017 in review: FDA approvals of new molecular entities. Drug Discovery Today, 2018, 23, 1469-1473.	3.2	21
64	An overview of FDA-approved vaccines & their innovators. Expert Review of Vaccines, 2017, 16, 1253-1266.	2.0	19
65	Workgroup 2: Human xenograft models of prostate cancer. , 1998, 36, 56-58.		16
66	ldentification of Tyrosine Phosphorylated Adhesion Proteins in Human Cancer Cells. Hybridoma, 1998, 17, 227-235.	0.9	16
67	An analysis of FDA-approved drugs for inflammation and autoimmune diseases. Drug Discovery Today, 2015, 20, 920-923.	3.2	16
68	2015 in review: FDA approval of new drugs. Drug Discovery Today, 2016, 21, 1046-1050.	3.2	14
69	Ligand binding up-regulates EphA2 messenger RNA through the mitogen-activated protein/extracellular signal-regulated kinase pathway. Molecular Cancer Research, 2003, 1, 1070-6.	1.5	14
70	Innovator Organizations in New Drug Development: Assessing the Sustainability of the Biopharmaceutical Industry. Cell Chemical Biology, 2016, 23, 644-653.	2.5	12
71	Analysis of FDA-approved imaging agents. Drug Discovery Today, 2017, 22, 1077-1083.	3.2	12
72	Assessing the public landscape of clinical-stage pharmaceuticals through freely available online databases. Drug Discovery Today, 2019, 24, 1010-1016.	3.2	12

#	Article	IF	CITATIONS
73	CDEK: Clinical Drug Experience Knowledgebase. Database: the Journal of Biological Databases and Curation, 2019, 2019, .	1.4	11
74	Expanding roles for academic entrepreneurship in drug discovery. Drug Discovery Today, 2020, 25, 1905-1909.	3.2	10
75	Sources of innovation for new medicines: questions of sustainability. Drug Discovery Today, 2021, 26, 240-247.	3.2	10
76	2018 in review: FDA approvals of new molecular entities. Drug Discovery Today, 2019, 24, 1710-1714.	3.2	9
77	2021 in review: FDA approvals of new medicines. Drug Discovery Today, 2022, 27, 2057-2064.	3.2	9
78	An analysis of FDA-approved drugs for metabolic diseases. Drug Discovery Today, 2015, 20, 648-651.	3.2	8
79	An analysis of FDA-approved drugs for pain and anesthesia. Drug Discovery Today, 2015, 20, 3-6.	3.2	7
80	New drug discovery: extraordinary opportunities in an uncertain time. Drug Discovery Today, 2015, 20, 1288-1292.	3.2	7
81	An analysis of FDA-approved drugs for cardiovascular diseases. Drug Discovery Today, 2016, 21, 1-4.	3.2	6
82	Lost medicines: a longer view of the pharmaceutical industry with the potential to reinvigorate discovery. Drug Discovery Today, 2019, 24, 382-389.	3.2	6
83	An analysis of FDA-approved drugs for psychiatric disorders. Drug Discovery Today, 2015, 20, 292-295.	3.2	5
84	2020 in review: FDA approvals of new medicines. Drug Discovery Today, 2021, 26, 2794-2799.	3.2	5
85	Rising Academic Contributions to Drug Development: Evidence of Vigor or Trauma?. ACS Pharmacology and Translational Science, 2020, 3, 1427-1429.	2.5	5
86	Expression and purification of the intact cytoplasmic domain of the human ephrin receptor A2 tyrosine kinase in Escherichia coli. Protein Expression and Purification, 2006, 47, 210-216.	0.6	4
87	Identification of novel host-oriented targets for Human Immunodeficiency Virus type 1 using Random Homozygous Gene Perturbation. Virology Journal, 2009, 6, 154.	1.4	4
88	A history of drug development in four acts. Drug Discovery Today, 2015, 20, 1163-1168.	3.2	4
89	Sources of innovation: an assessment of intellectual property. Drug Discovery Today, 2015, 20, 500-504.	3.2	4
90	Function-first approaches to improve target identification in cancer. Future Oncology, 2009, 5, 617-623.	1.1	3

#	Article	IF	CITATIONS
91	Post-approval fate of pharmaceutical companies. Drug Discovery Today, 2015, 20, 170-174.	3.2	3
92	2019 in review: FDA approvals of new medicines. Drug Discovery Today, 2020, 25, 1923-1929.	3.2	3
93	2014 in review: FDA approval of new drugs. Drug Discovery Today, 2017, 22, 620-624.	3.2	2
94	NIH Support for FDA-Approved Medicines. Cell Chemical Biology, 2017, 24, 1315-1316.	2.5	2
95	The engagement of β1 integrins on promonocytic cells promotes phosphorylation of Syk and formation of a protein complex containing Lyn and β1 integrin. , 1999, 29, 1426.		2
96	Oh, the Frustration of Antibodies!. ACS Pharmacology and Translational Science, 2020, 3, 1035-1036.	2.5	1
97	A reconsideration of university gap funds for promoting biomedical entrepreneurship. Journal of Clinical and Translational Science, 2022, 6, .	0.3	1
98	Patents, trade secrets and pricing. Drug Discovery Today, 2022, , .	3.2	1
99	Chapter 28 Cytometric analysis of cell contact and adhesion. Methods in Cell Biology, 2001, 63, 599-612.	0.5	Ο