Evsey V Morozov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9066854/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Equilibrium in a Queueing System with Retrials. Mathematics, 2022, 10, 428.	1.1	7
2	Stability condition of a cascade system with a general number of stations. Queueing Systems, 2022, 100, 225-227.	0.6	3
3	Modified Erlang Loss System for Cognitive Wireless Networks. Mathematics, 2022, 10, 2101.	1.1	3
4	Other Related Models. , 2021, , 167-182.		0
5	State-Dependent Systems. , 2021, , 95-105.		0
6	A Multiclass Multiserver System with Classical Retrials. , 2021, , 159-166.		0
7	Generalizations of Multiserver Systems. , 2021, , 67-93.		0
8	Multiclass Retrial Systems with Constant Retrial Rates. , 2021, , 129-148.		0
9	Systems with State-Dependent Retrial Rates. , 2021, , 149-158.		0
10	The Classical GI/G/1 and GI/G/m Queueing Systems. , 2021, , 15-52.		0
11	Stability Condition of a Multi-class Modified Erlang System. Communications in Computer and Information Science, 2021, , 251-263.	0.4	0
12	Sensitivity Analysis and Simulation of a Multiserver Queueing System with Mixed Service Time Distribution. Mathematics, 2020, 8, 1277.	1.1	6
13	The Overflow Probability Asymptotics in a Multiclass Single-Server Retrial System. Communications in Computer and Information Science, 2020, , 394-406.	0.4	1
14	On Comparison of Multiserver Systems with Exponential-Pareto Mixture Distribution. Communications in Computer and Information Science, 2020, , 141-152.	0.4	4
15	On Comparison of Multiserver Systems with Two-Component Mixture Distributions. Communications in Computer and Information Science, 2020, , 340-352.	0.4	3
16	A large deviation analysis of retrial models with constant and classic retrial rates. Performance Evaluation, 2019, 135, 102021.	0.9	5
17	Performance analysis and stability of multiclass orbit queue with constant retrial rates and balking. Performance Evaluation, 2019, 134, 102005.	0.9	17

A rare-event estimation of heterogeneous degradation process. , 2019, , .

1

#	Article	IF	CITATIONS
19	A Multiclass Retrial System with Coupled Orbits and Service Interruptions: Verification of Stability Conditions. , 2019, , .		3
20	A Coupling-Based Analysis of a Multiclass Retrial System with State-Dependent Retrial Rates. Lecture Notes in Computer Science, 2019, , 34-50.	1.0	2
21	Stability Conditions of a Multiclass System with NBU Retrials. Lecture Notes in Computer Science, 2019, , 51-63.	1.0	6
22	On Failure Rate Comparison of Finite Multiserver Systems. Lecture Notes in Computer Science, 2019, , 419-431.	1.0	5
23	An Upper Bound of the Large Deviation Probability in Multi-server Constant Retrial Rate System. Communications in Computer and Information Science, 2019, , 325-337.	0.4	1
24	On Conditional Monte Carlo for the Failure Probability Estimation. , 2018, , .		2
25	Analysis of a Generalized Retrial System with Coupled Orbits. , 2018, , .		6
26	Verification of the Stability of a Two-Server Queueing System With Static Priority. , 2018, , .		1
27	Cost and Effect of Replication and Quorum in Desktop Grid Computing. Communications in Computer and Information Science, 2018, , 143-156.	0.4	5
28	Upper bounds on the rate of convergence for constant retrial rate queueing model with two servers. Statistical Papers, 2018, 59, 1271-1282.	0.7	0
29	Regenerative Analysis of Two-Way Communication Orbit-Queue with General Service Time. Lecture Notes in Computer Science, 2018, , 22-32.	1.0	5
30	Inequalities for Workload Process in Queues with NBU/NWU Input. Advances in Intelligent Systems and Computing, 2018, , 535-544.	0.5	3
31	Stability of a Two-Pool N-Model with Preemptive-Resume Priority. Lecture Notes in Computer Science, 2018, , 399-409.	1.0	1
32	Stability criterion of a multiserver model with simultaneous service. Annals of Operations Research, 2017, 252, 29-39.	2.6	39
33	Maximal flowâ€level stability of bestâ€rate schedulers in heterogeneous wireless systems. Transactions on Emerging Telecommunications Technologies, 2017, 28, e2930.	2.6	7
34	Stability analysis of a multiclass retrial system with classical retrial policy. Performance Evaluation, 2017, 112, 15-26.	0.9	28
35	Stability Analysis of a Multiclass Retrial System with Coupled Orbit Queues. Lecture Notes in Computer Science, 2017, , 85-98.	1.0	7
36	Stability Analysis of a Basic Collaboration System via Fluid Limits. Communications in Computer and Information Science, 2017, , 351-365.	0.4	0

#	Article	IF	CITATIONS
37	Application of Splitting to Failure Estimation inÂControllable Degradation System. Communications in Computer and Information Science, 2017, , 217-230.	0.4	4
38	The Renewal-Based Asymptotics and Accelerated Estimation of a System with Random Volume Customers. Communications in Computer and Information Science, 2017, , 111-121.	0.4	0
39	Effective Bandwidth Estimation in Highly Reliable Regenerative Networks. , 2016, , .		Ο
40	On the ergodicity bounds for a constant retrial rate queueing model. , 2016, , .		2
41	Monotonicity and stochastic bounds for simultaneous service multiserver systems. , 2016, , .		3
42	Stability Analysis of a MAP/M/s Cluster Model by Matrix-Analytic Method. Lecture Notes in Computer Science, 2016, , 63-76.	1.0	10
43	Stability of Constant Retrial Rate Systems with NBU Input*. Journal of Mathematical Sciences, 2016, 214, 22-33.	0.1	Ο
44	Sufficient stability conditions for multi-class constant retrial rate systems. Queueing Systems, 2016, 82, 149-171.	0.6	32
45	A State-Dependent Control for Green Computing. Lecture Notes in Electrical Engineering, 2016, , 57-67.	0.3	2
46	A Regeneration-Based Estimation of High Performance Multiserver Systems. Communications in Computer and Information Science, 2016, , 271-282.	0.4	5
47	On Regenerative Envelopes for Cluster Model Simulation. Communications in Computer and Information Science, 2016, , 222-230.	0.4	5
48	Stability Analysis and Simulation of a State-Dependent Transmission Rate System. Advances in Intelligent Systems and Computing, 2016, , 673-683.	0.5	0
49	Regenerative Analysis of a System with a Random Volume of Customers. Communications in Computer and Information Science, 2016, , 261-272.	0.4	3
50	On Conditional Monte Carlo Estimation of Busy Period Probabilities in Gaussian Queues. Communications in Computer and Information Science, 2016, , 280-288.	0.4	2
51	On the Use of a Bridge Process in a Conditional Monte Carlo Simulation of Gaussian Queues. Communications in Computer and Information Science, 2016, , 207-220.	0.4	2
52	Optimization of a forest harvesting set based on the Queueing Theory: Case study from Karelia. LesnÃcky ÄŒasopis, 2015, 61, 211-220.	0.8	4
53	Accelerated verification of stability of simultaneous service multiserver systems. , 2015, , .		2
54	Optimal and Equilibrium Retrial Rates in Single-Server Multi-orbit Retrial Systems. Lecture Notes in Computer Science, 2015, , 135-146.	1.0	1

#	Article	IF	CITATIONS
55	An HPC Upgrade/Downgrade that Provides Workload Stability. Lecture Notes in Computer Science, 2015, , 279-284.	1.0	2
56	Asymptotically Work-Conserving Disciplines in Communication Systems. Communications in Computer and Information Science, 2015, , 326-335.	0.4	1
57	On The Effective Bandwidth Estimation In Communication Network. , 2015, , .		2
58	STABILITY ANALYSIS AND SIMULATION OF N-CLASS RETRIAL SYSTEM WITH CONSTANT RETRIAL RATES AND POISSON INPUTS. Asia-Pacific Journal of Operational Research, 2014, 31, 1440002.	0.9	16
59	Simulating Supercomputer Workload with Hpcwld Package for R. , 2014, , .		3
60	An application of the inspection paradox in stability analysis of optical systems. , 2014, , .		1
61	Stabilization of a high performance cluster model. , 2014, , .		2
62	Stability analysis of GI/GI/c/K retrial queue with constant retrial rate. Mathematical Methods of Operations Research, 2014, 79, 273-291.	0.4	13
63	Accelerated Consistent Estimation of a High Load Probability in M/G/1 and GI/G/1 Queues*. Journal of Mathematical Sciences, 2014, 200, 401-410.	0.1	1
64	Stability Analysis of a General State-Dependent Multiserver Queue. Journal of Mathematical Sciences, 2014, 200, 462-472.	0.1	6
65	Stability analysis of cascade networks via fluid models. Performance Evaluation, 2014, 82, 39-54.	0.9	10
66	On the accuracy of the effective bandwidth regenerative estimation. , 2014, , .		2
67	Asymptotic Analysis of Queueing Systems with Finite Buffer Space. Communications in Computer and Information Science, 2014, , 223-232.	0.4	9
68	Stability Criterion of a General Multiserver Multiclass Queueing System. , 2014, , 229-238.		2
69	Stability Analysis of Some Networks with Interacting Servers. Lecture Notes in Computer Science, 2014, , 1-15.	1.0	Ο
70	On the Effective Envelopes for Fluid Queues with Gaussian Input. Communications in Computer and Information Science, 2014, , 178-189.	0.4	0
71	Stability analysis of a two-station cascade queueing network. Annals of Operations Research, 2013, 202, 135-160.	2.6	10
72	Performance Evaluation of Finite Buffer Queues through Regenerative Simulation. Communications in Computer and Information Science, 2013, , 131-139.	0.4	0

#	Article	IF	CITATIONS
73	Stability of multiwavelength optical buffers with delayâ€oriented scheduling. European Transactions on Telecommunications, 2012, 23, 217-226.	1.2	6
74	An Adaptive Backoff Protocol with Markovian Contention Window Control. Communications in Statistics Part B: Simulation and Computation, 2012, 41, 1093-1106.	0.6	7
75	Stability analysis of multiserver discrete-time queueing systems with renewal-type server interruptions. Performance Evaluation, 2011, 68, 1261-1275.	0.9	22
76	Stability of singleâ€wavelength optical buffers. European Transactions on Telecommunications, 2010, 21, 202-212.	1.2	8
77	Moment properties of queueing systems and networks. , 2010, , .		0
78	Regenerative analysis of a finite buffer fluid queue. , 2010, , .		1
79	Stability analysis of regenerative queueing systems. Automation and Remote Control, 2009, 70, 1977-1991.	0.4	34
80	A multiserver retrial queue: regenerative stability analysis. Queueing Systems, 2007, 56, 157-168.	0.6	38
81	Weak Regeneration in Modeling of Queueing Processes. Queueing Systems, 2004, 46, 295-315.	0.6	32
82	Stability of Jackson Type Network Output. Queueing Systems, 2002, 40, 383-406.	0.6	2
83	Regeneration of a closed queueing network. Journal of Mathematical Sciences, 1994, 69, 1186-1192.	0.1	7
84	Wide sense regenerative processes with applications to multi-channel queues and networks. Acta Applicandae Mathematicae, 1994, 34, 189-212.	0.5	13
85	Conservation of a regenerative stream in an acyclic net. Journal of Soviet Mathematics, 1991, 57, 3302-3305.	0.0	4