Sowgat Muzahid

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9066829/publications.pdf

Version: 2024-02-01

361045 433756 1,054 44 20 31 citations h-index g-index papers 45 45 45 938 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Discovery of a Cool, Metal-rich Gas Reservoir in the Outskirts of z â‰^0.5 Clusters. Astrophysical Journal, 2022, 933, 229.	1.6	3
2	Spatial Distribution of O vi Covering Fractions in the Simulated Circumgalactic Medium. Astrophysical Journal, 2021, 907, 8.	1.6	3
3	MusE GAs FLOw and Wind V. The dust/metallicity-anisotropy of the circum-galactic medium. Monthly Notices of the Royal Astronomical Society, 2021, 502, 3733-3745.	1.6	17
4	Pair lines of sight observations of multiphase gas bearing O vi in a galaxy environment. Monthly Notices of the Royal Astronomical Society, 2021, 503, 3243-3261.	1.6	3
5	MusE GAs FLOw and Wind (MEGAFLOW) VI. A study of C <scp> iv</scp> and Mg <scp> ii</scp> absorbing gas surrounding [O <scp> ii</scp>] emitting galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 506, 1355-1363.	g 1.6	12
6	Discovery of extremely low-metallicity circumgalactic gas at $\langle i \rangle z \langle i \rangle = 0.5$ towards Q0454â^220. Monthly Notices of the Royal Astronomical Society, 2021, 506, 5640-5657.	1.6	4
7	MusE GAs FLOw and Wind (MEGAFLOW) VIII. Discovery of a Mg <scp>ii</scp> emission halo probed by a quasar sightline. Monthly Notices of the Royal Astronomical Society, 2021, 507, 4294-4315.	1.6	35
8	Revealing the impact of quasar luminosity on giant Ly α nebulae. Monthly Notices of the Royal Astronomical Society, 2021, 502, 494-509.	1.6	18
9	Cloud-by-cloud, multiphase, Bayesian modelling: application to four weak, low-ionization absorbers. Monthly Notices of the Royal Astronomical Society, 2021, 501, 2112-2139.	1.6	14
10	MUSEQuBES: characterizing the circumgalactic medium of redshift â‰^3.3 Ly α emitters. Monthly Notices of the Royal Astronomical Society, 2021, 508, 5612-5637.	1.6	17
11	Evidence for galaxy quenching in the green valley caused by a lack of a circumgalactic medium. Monthly Notices of the Royal Astronomical Society, 2020, 500, 2289-2301.	1.6	6
12	MUSEQuBES: calibrating the redshifts of Ly α emitters using stacked circumgalactic medium absorption profiles. Monthly Notices of the Royal Astronomical Society, 2020, 496, 1013-1022.	1.6	44
13	MusE GAs FLOw and Wind (MEGAFLOW) IV. A two sightline tomography of a galactic wind. Monthly Notices of the Royal Astronomical Society, 2020, 492, 4576-4588.	1.6	17
14	Disentangling the multiphase circumgalactic medium shared between a dwarf and a massive star-forming galaxy at $\langle i \rangle z \langle j \rangle \hat{a}^1/40.4$. Monthly Notices of the Royal Astronomical Society, 2020, 500, 3987-3998.	1.6	7
15	Low-mass Group Environments Have No Substantial Impact on the Circumgalactic Medium Metallicity. Astronomical Journal, 2020, 159, 216.	1.9	4
16	Detection of metal-rich, cool-warm gas in the outskirts of galaxy clusters. Monthly Notices of the Royal Astronomical Society, 2019, 488, 5327-5339.	1.6	8
17	MusE GAs FLOw and Wind (MEGAFLOW) – III. Galactic wind properties using background quasars. Monthly Notices of the Royal Astronomical Society, 2019, 490, 4368-4381.	1.6	81
18	A Giant Lyα Nebula and a Small-scale Clumpy Outflow in the System of the Exotic Quasar J0952+0114 Unveiled by MUSE ^{â^—} . Astrophysical Journal, 2019, 880, 47.	1.6	15

#	Article	IF	CITATIONS
19	Characterizing circumgalactic gas around massive ellipticals at <i>>z</i> à≈ 0.4 – III. The galactic environment of a chemically pristine Lyman limit absorber. Monthly Notices of the Royal Astronomical Society, 2019, 484, 431-441.	1.6	16
20	MusE GAs FLOw and Wind (MEGAFLOW) II. A study of gas accretion around <i>z</i> Ââ‰Â1 star-forming galaxies with background quasars. Monthly Notices of the Royal Astronomical Society, 2019, 485, 1961-1980.	1.6	86
21	The Relation between Galaxy ISM and Circumgalactic O vi Gas Kinematics Derived from Observations and ĴcDM Simulations. Astrophysical Journal, 2019, 870, 137.	1.6	25
22	The Physical Origins of the Identified and Still Missing Components of the Warm–Hot Intergalactic Medium: Insights from Deep Surveys in the Field of Blazar 1ES1553+113. Astrophysical Journal Letters, 2019, 884, L31.	3.0	26
23	The Relationship between Galaxy ISM and Circumgalactic Gas Metallicities. Astrophysical Journal, 2019, 886, 91.	1.6	33
24	Relationship between the Metallicity of the Circumgalactic Medium and Galaxy Orientation. Astrophysical Journal, 2019, 883, 78.	1.6	39
25	Kinematics of the O vi Circumgalactic Medium: Halo Mass Dependence and Outflow Signatures. Astrophysical Journal, 2019, 886, 66.	1.6	12
26	Galaxy and Quasar Fueling Caught in the Act from the Intragroup to the Interstellar Medium. Astrophysical Journal Letters, 2018, 869, L1.	3.0	39
27	MUSE Spectroscopic Identifications of Ultra-faint Emission Line Galaxies with M _{UV} Ââ^1/4Ââ^15 [*] . Astrophysical Journal Letters, 2018, 865, L1.	3.0	34
28	Dark Galaxy Candidates at Redshift â^1/43.5 Detected with MUSE*. Astrophysical Journal, 2018, 859, 53.	1.6	37
29	THE HIGHLY IONIZED CIRCUMGALACTIC MEDIUM IS KINEMATICALLY UNIFORM AROUND GALAXIES. Astrophysical Journal, 2017, 834, 148.	1.6	24
30	The Impact of the Group Environment on the O vi Circumgalactic Medium. Astrophysical Journal, 2017, 844, 23.	1.6	28
31	Implications of an updated ultraviolet background for the ionization mechanisms of intervening Ne viii absorbers. Monthly Notices of the Royal Astronomical Society, 2017, 466, 3133-3142.	1.6	20
32	Detection of two intervening Ne viii absorbers probing warm gas at z â^¼ 0.6. Monthly Notices of the Royal Astronomical Society, 2017, 471, 792-810.	1.6	15
33	Discovery of an H i-rich Gas Reservoir in the Outskirts of SZ-effect-selected Clusters. Astrophysical Journal Letters, 2017, 846, L8.	3.0	13
34	The MUSE <i>Hubble</i> Ultra Deep Field Survey. Astronomy and Astrophysics, 2017, 608, A7.	2.1	28
35	HST Observations Reveal the Curious Geometry of Circumgalactic Gas. Proceedings of the International Astronomical Union, 2016, 11, 342-344.	0.0	0
36	Gas Kinematics in the Multiphase Circumgalactic Medium. Proceedings of the International Astronomical Union, 2016, 11, 345-347.	0.0	0

3

#	Article	IF	CITATIONS
37	THE EXTREME ULTRAVIOLET VARIABILITY OF QUASARS. Astrophysical Journal, 2016, 830, 104.	1.6	11
38	MOLECULAR HYDROGEN ABSORPTION FROM THE HALO OF A z \hat{a}^4 0.4 GALAXY. Astrophysical Journal, 2016, 823, 66.	1.6	31
39	A pair of O vi and broad LyÂα absorbers probing warm gas in a galaxy group environment at <i>z</i> â^1⁄4 0.4. Monthly Notices of the Royal Astronomical Society, 2016, 458, 733-746.	1.6	22
40	THE AZIMUTHAL DEPENDENCE OF OUTFLOWS AND ACCRETION DETECTED USING O vi ABSORPTION. Astrophysical Journal, 2015, 815, 22.	1.6	69
41	AN EXTREME METALLICITY, LARGE-SCALE OUTFLOW FROM A STAR-FORMING GALAXY AT <i>z</i> a^1/4 0.4. Astrophysical Journal, 2015, 811, 132.	1.6	71
42	HALO MASS DEPENDENCE OF H I AND O VI ABSORPTION: EVIDENCE FOR DIFFERENTIAL KINEMATICS. Astrophysical Journal, 2014, 792, 128.	1.6	23
43	PROBING THE LARGE AND MASSIVE CIRCUMGALACTIC MEDIUM OF A GALAXY AT <i>z</i> false 0.2 USING A PAIR COUNTY OF A GALAXY AT <i>z</i> false 0.2 USING A PAIR COUNTY OF A GALAXY AT <i>z</i> false 0.2 USING A PAIR COUNTY OF A GALAXY AT <i>z</i> false 0.2 USING A PAIR COUNTY OF A GALAXY AT <i>z</i> false 0.2 USING A PAIR COUNTY OF A GALAXY AT <i>z</i> false 0.2 USING A PAIR COUNTY OF A GALAXY AT <i>z</i> false 0.2 USING A PAIR COUNTY OF A GALAXY AT <i>z</i> false 0.2 USING A PAIR COUNTY OF A GALAXY AT <i>z</i> false 0.2 USING A PAIR COUNTY OF A GALAXY AT <i>z</i> false 0.2 USING A PAIR COUNTY OF A GALAXY AT <i>z</i> false 0.2 USING A PAIR COUNTY OF A GALAXY AT <i>z</i> false 0.2 USING A PAIR COUNTY OF A GALAXY AT <i>z</i> false 0.2 USING A PAIR COUNTY OF A GALAXY AT <i>z</i> false 0.2 USING A PAIR COUNTY OF A GALAXY AT <i td="" z<=""></i>)F 1.6	33
44	C IV absorbers tracing cool gas in dense galaxy group/cluster environments. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	11