

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9066817/publications.pdf Version: 2024-02-01

287 papers	51,128 citations	527 127 h-index	¹⁵⁶¹ 217 g-index
331	331	331	32797
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Interactions between heterologous helix-loop-helix proteins generate complexes that bind specifically to a common DNA sequence. Cell, 1989, 58, 537-544.	13.5	1,791
2	Synaptic vesicle exocytosis captured by quick freezing and correlated with quantal transmitter release Journal of Cell Biology, 1979, 81, 275-300.	2.3	1,361
3	Primary structure and functional expression of a mouse inward rectifier potassium channel. Nature, 1993, 362, 127-133.	13.7	1,026
4	Expression Cloning of TMEM16A as a Calcium-Activated Chloride Channel Subunit. Cell, 2008, 134, 1019-1029.	13.5	1,022
5	Asymmetric distribution of numb protein during division of the sensory organ precursor cell confers distinct fates to daughter cells. Cell, 1994, 76, 477-491.	13.5	711
6	G Protein-Coupled Inwardly Rectifying K+ Channels (GIRKs) Mediate Postsynaptic but Not Presynaptic Transmitter Actions in Hippocampal Neurons. Neuron, 1997, 19, 687-695.	3.8	667
7	Control of Daughter Cell Fates during Asymmetric Division: Interaction of Numb and Notch. Neuron, 1996, 17, 27-41.	3.8	620
8	Primary structure and functional expression of a rat G-protein-coupled muscarinic potassium channel. Nature, 1993, 364, 802-806.	13.7	619
9	Branching out: mechanisms of dendritic arborization. Nature Reviews Neuroscience, 2010, 11, 316-328.	4.9	612
10	A protein component of Drosophila polar granules is encoded by vasa and has extensive sequence similarity to ATP-dependent helicases. Cell, 1988, 55, 577-587.	13.5	582
11	Hippocampal Neuronal Polarity Specified by Spatially Localized mPar3/mPar6 and PI 3-Kinase Activity. Cell, 2003, 112, 63-75.	13.5	582
12	Alteration of voltage-dependence of Shaker potassium channel by mutations in the S4 sequence. Nature, 1991, 349, 305-310.	13.7	530
13	atonal is a proneural gene that directs chordotonal organ formation in the Drosophila peripheral nervous system. Cell, 1993, 73, 1307-1321.	13.5	521
14	Tiling of the <i>Drosophila</i> epidermis by multidendritic sensory neurons. Development (Cambridge), 2002, 129, 2867-2878.	1.2	506
15	CLONED POTASSIUM CHANNELS FROM EUKARYOTES AND PROKARYOTES. Annual Review of Neuroscience, 1997, 20, 91-123.	5.0	503
16	Multiple potassium–channel components are produced by alternative splicing at the Shaker locus in Drosophila. Nature, 1988, 331, 137-142.	13.7	498
17	Properties of the larval neuromuscular junction in Drosophila melanogaster Journal of Physiology, 1976, 262, 189-214.	1.3	497
18	numb, a gene required in determination of cell fate during sensory organ formation in Drosophila embryos. Cell, 1989, 58, 349-360.	13.5	492

#	Article	lF	CITATIONS
19	Activation of the cloned muscarinic potassium channel by G protein βγ subunits. Nature, 1994, 370, 143-146.	13.7	484
20	atonal is the proneural gene for Drosophila photoreceptors. Nature, 1994, 369, 398-400.	13.7	477
21	Asymmetric segregation of Numb and Prospero during cell division. Nature, 1995, 377, 624-627.	13.7	473
22	Asymmetric Localization of a Mammalian Numb Homolog during Mouse Cortical Neurogenesis. Neuron, 1996, 17, 43-53.	3.8	462
23	Subcellular segregation of two A-type K+ channel proteins in rat central neurons. Neuron, 1992, 9, 271-284.	3.8	456
24	Differential effects of the Rac GTPase on Purkinje cell axons and dendritic trunks and spines. Nature, 1996, 379, 837-840.	13.7	436
25	Microtubule Plus-End-Tracking Proteins Target Gap Junctions Directly from the Cell Interior to Adherens Junctions. Cell, 2007, 128, 547-560.	13.5	433
26	HLH proteins, fly neurogenesis, and vertebrate myogenesis. Cell, 1993, 75, 827-830.	13.5	423
27	frazzled Encodes a Drosophila Member of the DCC Immunoglobulin Subfamily and Is Required for CNS and Motor Axon Guidance. Cell, 1996, 87, 197-204.	13.5	422
28	The distribution and targeting of neuronal voltage-gated ion channels. Nature Reviews Neuroscience, 2006, 7, 548-562.	4.9	412
29	Molecular Basis for Interactions of G Protein Subunits with Effectors. Science, 1998, 280, 1271-1274.	6.0	409
30	Functional Dissociation of Î $^1\!\!/$ Opioid Receptor Signaling and Endocytosis. Neuron, 1999, 23, 737-746.	3.8	409
31	Light-avoidance-mediating photoreceptors tile the Drosophila larval body wall. Nature, 2010, 468, 921-926.	13.7	399
32	Local generation of glia is a major astrocyte source in postnatal cortex. Nature, 2012, 484, 376-380.	13.7	393
33	Expression of functional potassium channels from Shaker cDNA in Xenopus oocytes. Nature, 1988, 331, 143-145.	13.7	387
34	prospero is expressed in neuronal precursors and encodes a nuclear protein that is involved in the control of axonal outgrowth in Drosophila. Cell, 1991, 67, 941-953.	13.5	377
35	Role of inscuteable in orienting asymmetric cell divisions in Drosophila. Nature, 1996, 383, 50-55.	13.7	375
36	Probing Protein Electrostatics with a Synthetic Fluorescent Amino Acid. Science, 2002, 296, 1700-1703.	6.0	375

#	Article	IF	CITATIONS
37	Role of neurogenic genes in establishment of follicle cell fate and oocyte polarity during oogenesis in Drosophila. Cell, 1991, 66, 433-449.	13.5	373
38	Role of ER Export Signals in Controlling Surface Potassium Channel Numbers. Science, 2001, 291, 316-319.	6.0	362
39	International Union of Pharmacology. XLI. Compendium of Voltage-Gated Ion Channels: Potassium Channels. Pharmacological Reviews, 2003, 55, 583-586.	7.1	358
40	Lâ€glutamate as an excitatory transmitter at the Drosophila larval neuromuscular junction Journal of Physiology, 1976, 262, 215-236.	1.3	356
41	Peptidergic transmission in sympathetic ganglia of the frog Journal of Physiology, 1982, 327, 219-246.	1.3	349
42	Growing Dendrites and Axons Differ in Their Reliance on the Secretory Pathway. Cell, 2007, 130, 717-729.	13.5	342
43	Foxn4 directly regulates <i>tbx2b</i> expression and atrioventricular canal formation. Genes and Development, 2008, 22, 734-739.	2.7	339
44	Voltage-sensitive ion channels. Cell, 1989, 56, 13-25.	13.5	324
45	<i>Drosophila</i> Egg-Laying Site Selection as a System to Study Simple Decision-Making Processes. Science, 2008, 319, 1679-1683.	6.0	320
46	Evidence that direct binding of Gβγ to the GIRK1 G protein-gated inwardly rectifying K+ channel is important for channel activation. Neuron, 1995, 15, 1133-1143.	3.8	316
47	Immunohistochemical localization of GABAB receptors in the rat central nervous system. , 1999, 405, 299-321.		312
48	Mammalian Par3 Regulates Progenitor Cell Asymmetric Division via Notch Signaling in the Developing Neocortex. Neuron, 2009, 63, 189-202.	3.8	310
49	Genes regulating dendritic outgrowth, branching, and routing in Drosophila. Genes and Development, 1999, 13, 2549-2561.	2.7	306
50	Drosophila NOMPC is a mechanotransduction channel subunit for gentle-touch sensation. Nature, 2013, 493, 221-225.	13.7	304
51	Cloning of a probable potassium channel gene from mouse brain. Nature, 1988, 332, 837-839.	13.7	300
52	Control of rectification and permeation by residues in two distinct domains in an inward rectifier K+ channel. Neuron, 1995, 14, 1047-1054.	3.8	299
53	Numb and Numbl are required for maintenance of cadherin-based adhesion and polarity of neural progenitors. Nature Neuroscience, 2007, 10, 819-827.	7.1	294
54	The Control of Dendrite Development. Neuron, 2003, 40, 229-242.	3.8	293

#	Article	IF	CITATIONS
55	Transient posterior localization of a kinesin fusion protein reflects anteroposterior polarity of the Drosophila oocyte. Current Biology, 1994, 4, 289-300.	1.8	290
56	Genome-wide study of aging and oxidative stress response in Drosophilamelanogaster. Proceedings of the United States of America, 2000, 97, 13726-13731.	3.3	290
57	Calcium-activated chloride channel TMEM16A modulates mucin secretion and airway smooth muscle contraction. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16354-16359.	3.3	290
58	The Drosophila Numb protein inhibits signaling of the Notch receptor during cell-cell interaction in sensory organ lineage Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 11925-11932.	3.3	285
59	Different Levels of the Homeodomain Protein Cut Regulate Distinct Dendrite Branching Patterns of Drosophila Multidendritic Neurons. Cell, 2003, 112, 805-818.	13.5	284
60	Studies on expression and function of the TMEM16A calcium-activated chloride channel. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 21413-21418.	3.3	278
61	Tiling of the Drosophila epidermis by multidendritic sensory neurons. Development (Cambridge), 2002, 129, 2867-78.	1.2	278
62	Transformation of sensory organs by Mutations of the cut locus of D. melanogaster. Cell, 1987, 51, 293-307.	13.5	275
63	Golgi Outposts Shape Dendrite Morphology by Functioning as Sites of Acentrosomal Microtubule Nucleation in Neurons. Neuron, 2012, 76, 921-930.	3.8	273
64	Control of the Postmating Behavioral Switch in Drosophila Females by Internal Sensory Neurons. Neuron, 2009, 61, 519-526.	3.8	271
65	M Channel KCNQ2 Subunits Are Localized to Key Sites for Control of Neuronal Network Oscillations and Synchronization in Mouse Brain. Journal of Neuroscience, 2001, 21, 9529-9540.	1.7	267
66	Dynein is required for polarized dendritic transport and uniform microtubule orientation in axons. Nature Cell Biology, 2008, 10, 1172-1180.	4.6	265
67	Miranda Is Required for the Asymmetric Localization of Prospero during Mitosis in Drosophila. Cell, 1997, 90, 449-458.	13.5	264
68	Asymmetric cell division. Nature, 1998, 392, 775-778.	13.7	261
69	APC and GSK-3Î ² Are Involved in mPar3 Targeting to the Nascent Axon and Establishment of Neuronal Polarity. Current Biology, 2004, 14, 2025-2032.	1.8	261
70	Enhancer-driven membrane markers for analysis of nonautonomous mechanisms reveal neuron–glia interactions in <i>Drosophila</i> . Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 9673-9678.	3.3	259
71	Functional Effects of the Mouse weaver Mutation on G Protein–Gated Inwardly Rectifying K+ Channels. Neuron, 1996, 16, 321-331.	3.8	256
72	Neutrophil-derived microvesicles enter cartilage and protect the joint in inflammatory arthritis. Science Translational Medicine, 2015, 7, 315ra190.	5.8	256

#	Article	IF	CITATIONS
73	Drosophila Sensory Neurons Require Dscam for Dendritic Self-Avoidance and Proper Dendritic Field Organization. Neuron, 2007, 54, 403-416.	3.8	254
74	Dendrites of Distinct Classes of Drosophila Sensory Neurons Show Different Capacities for Homotypic Repulsion. Current Biology, 2003, 13, 618-626.	1.8	251
75	Activity- and mTOR-Dependent Suppression of Kv1.1 Channel mRNA Translation in Dendrites. Science, 2006, 314, 144-148.	6.0	247
76	International Union of Pharmacology. LIV. Nomenclature and Molecular Relationships of Inwardly Rectifying Potassium Channels. Pharmacological Reviews, 2005, 57, 509-526.	7.1	240
77	Tracing the roots of ion channels. Cell, 1992, 69, 715-718.	13.5	239
78	Identification of E2/E3 Ubiquitinating Enzymes and Caspase Activity Regulating Drosophila Sensory Neuron Dendrite Pruning. Neuron, 2006, 51, 283-290.	3.8	233
79	Genetic and Physiologic Dissection of the Vertebrate Cardiac Conduction System. PLoS Biology, 2008, 6, e109.	2.6	233
80	Determination of the subunit stoichiometry of an inwardly rectifying potassium channel. Neuron, 1995, 15, 1441-1447.	3.8	224
81	Adherens junctions inhibit asymmetric division in the Drosophila epithelium. Nature, 2001, 409, 522-525.	13.7	223
82	Control of Dendritic Branching and Tiling by the Tricornered-Kinase/Furry Signaling Pathway in Drosophila Sensory Neurons. Cell, 2004, 119, 245-256.	13.5	218
83	Drosophila Stardust interacts with Crumbs to control polarity of epithelia but not neuroblasts. Nature, 2001, 414, 634-638.	13.7	217
84	Characterization of a mammalian cDNA for an inactivating voltage-sensitive K+ channel. Neuron, 1991, 7, 471-483.	3.8	211
85	Cardiac BIN1 folds T-tubule membrane, controlling ion flux and limiting arrhythmia. Nature Medicine, 2014, 20, 624-632.	15.2	203
86	Differential expression of K+ channel mRNAs in the rat brain and down-regulation in the hippocampus following seizures. Neuron, 1992, 8, 1055-1067.	3.8	201
87	Projections of Drosophila multidendritic neurons in the central nervous system: links with peripheral dendrite morphology. Development (Cambridge), 2007, 134, 55-64.	1.2	200
88	Dendrite-specific remodeling of Drosophila sensory neurons requires matrix metalloproteases, ubiquitin-proteasome, and ecdysone signaling. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 15230-15235.	3.3	198
89	The Role of the TRP Channel NompC in Drosophila Larval and Adult Locomotion. Neuron, 2010, 67, 373-380.	3.8	198
90	Electron cryo-microscopy structure of the mechanotransduction channel NOMPC. Nature, 2017, 547, 118-122.	13.7	198

#	Article	IF	CITATIONS
91	Inactivation of Numb and Numblike in Embryonic Dorsal Forebrain Impairs Neurogenesis and Disrupts Cortical Morphogenesis. Neuron, 2003, 40, 1105-1118.	3.8	197
92	Contribution of GIRK2-mediated postsynaptic signaling to opiate and Â2-adrenergic analgesia and analgesic sex differences. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 271-276.	3.3	197
93	Voltageâ€gated potassium channels and the diversity of electrical signalling. Journal of Physiology, 2012, 590, 2591-2599.	1.3	196
94	Diverse Trafficking Patterns Due to Multiple Traffic Motifs in G Protein-Activated Inwardly Rectifying Potassium Channels from Brain and Heart. Neuron, 2002, 33, 715-729.	3.8	195
95	Partner of Numb Colocalizes with Numb during Mitosis and Directs Numb Asymmetric Localization in Drosophila Neural and Muscle Progenitors. Cell, 1998, 95, 225-235.	13.5	191
96	Ankyrin Repeats Convey Force to Gate the NOMPC Mechanotransduction Channel. Cell, 2015, 162, 1391-1403.	13.5	191
97	Rho family small GTP-binding proteins in growth cone signalling. Current Opinion in Neurobiology, 1997, 7, 81-86.	2.0	190
98	Postnatal Deletion of Numb/Numblike Reveals Repair and Remodeling Capacity in the Subventricular Neurogenic Niche. Cell, 2006, 127, 1253-1264.	13.5	190
99	Evidence that the S6 segment of the Shaker voltage-gated K+ channel comprises part of the pore. Nature, 1994, 367, 179-182.	13.7	188
100	How might the diversity of potassium channels be generated?. Trends in Neurosciences, 1990, 13, 415-419.	4.2	187
101	Mouse numb is an essential gene involved in cortical neurogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 6844-6849.	3.3	187
102	Colocalization and coassembly of two human brain M-type potassium channel subunits that are mutated in epilepsy. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 4914-4919.	3.3	184
103	Rapamycin Ameliorates Age-Dependent Obesity Associated with Increased mTOR Signaling in Hypothalamic POMC Neurons. Neuron, 2012, 75, 425-436.	3.8	183
104	Four cDNA clones from the Shaker locus of Drosophila induce kinetically distinct A-type potassium currents in Xenopus oocytes. Neuron, 1988, 1, 659-667.	3.8	181
105	The tumour suppressor Hippo acts with the NDR kinases in dendritic tiling and maintenance. Nature, 2006, 443, 210-213.	13.7	180
106	The Polar T1 Interface Is Linked to Conformational Changes that Open the Voltage-Gated Potassium Channel. Cell, 2000, 102, 657-670.	13.5	174
107	The germ cell-less gene product: A posteriorly localized component necessary for germ cell development in Drosophila. Cell, 1992, 70, 569-584.	13.5	173
108	Polarized axonal surface expression of neuronal KCNQ channels is mediated by multiple signals in the KCNQ2 and KCNQ3 C-terminal domains. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 8870-8875.	3.3	173

#	Article	IF	CITATIONS
109	Similarity of the product of the Drosophila neurogenic gene big brain to transmembrane channel proteins. Nature, 1990, 345, 163-167.	13.7	171
110	Maggot's hair and bug's eye: Role of cell interactions and intrinsic factors in cell fate specification. Neuron, 1995, 14, 1-5.	3.8	171
111	Sensory neurons and peripheral pathways in Drosophila embryos. Roux's Archives of Developmental Biology, 1986, 195, 281-289.	1.2	170
112	Function of GB1 and GB2 subunits in G protein coupling of GABAB receptors. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 14649-14654.	3.3	169
113	Mammalian electrophysiology on a microfluidic platform. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 9112-9117.	3.3	169
114	Integrins Regulate Repulsion-Mediated Dendritic Patterning of Drosophila Sensory Neurons by Restricting Dendrites in a 2D Space. Neuron, 2012, 73, 64-78.	3.8	166
115	Assembly of Voltage-gated Potassium Channels. Journal of Biological Chemistry, 1995, 270, 24761-24768.	1.6	161
116	The microRNA bantam Functions in Epithelial Cells to Regulate Scaling Growth of Dendrite Arbors in Drosophila Sensory Neurons. Neuron, 2009, 63, 788-802.	3.8	158
117	Regions Responsible for the Assembly of Inwardly Rectifying Potassium Channels. Cell, 1996, 87, 857-868.	13.5	156
118	International Union of Basic and Clinical Pharmacology. LXXXV: Calcium-Activated Chloride Channels. Pharmacological Reviews, 2012, 64, 1-15.	7.1	156
119	Regeneration of <i>Drosophila</i> sensory neuron axons and dendrites is regulated by the Akt pathway involving <i>Pten</i> and microRNA <i>bantam</i> . Genes and Development, 2012, 26, 1612-1625.	2.7	154
120	Analysis of endoplasmic reticulum trafficking signals by combinatorial screening in mammalian cells. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 2431-2436.	3.3	152
121	Probing the G-protein Regulation of GIRK1 and GIRK4, the Two Subunits of the KACh Channel, Using Functional Homomeric Mutants. Journal of Biological Chemistry, 1997, 272, 31553-31560.	1.6	149
122	A Conserved Domain in Axonal Targeting of Kv1 (Shaker) Voltage-Gated Potassium Channels. Science, 2003, 301, 646-649.	6.0	147
123	Calcium-Activated Chloride Channels (CaCCs) Regulate Action Potential and Synaptic Response in Hippocampal Neurons. Neuron, 2012, 74, 179-192.	3.8	146
124	Spatially localized rhomboid is required for establishment of the dorsal-ventral axis in Drosophila oogenesis. Cell, 1993, 73, 953-965.	13.5	145
125	deadpan, an essential pan-neural gene encoding an HLH protein, acts as a denominator in Drosophila sex determination. Cell, 1992, 70, 911-922.	13.5	142
126	Common Molecular Pathways Mediate Long-Term Potentiation of Synaptic Excitation and Slow Synaptic Inhibition. Cell, 2005, 123, 105-118.	13.5	140

#	Article	IF	CITATIONS
127	Sound response mediated by the TRP channels NOMPC, NANCHUNG, and INACTIVE in chordotonal organs of <i>Drosophila</i> larvae. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13612-13617.	3.3	137
128	Yeast Screen for Constitutively Active Mutant G Protein–Activated Potassium Channels. Neuron, 2001, 29, 657-667.	3.8	134
129	Genes required for specifying cell fates in Drosophila embryonic sensory nervous system. Trends in Neurosciences, 1990, 13, 493-498.	4.2	133
130	Bidirectional Regulation of Dendritic Voltage-Gated Potassium Channels by the Fragile X Mental Retardation Protein. Neuron, 2011, 72, 630-642.	3.8	132
131	Altered ultrasonic vocalizations in a tuberous sclerosis mouse model of autism. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 11074-11079.	3.3	128
132	The S4–S5 loop contributes to the ion-selective pore of potassium channels. Neuron, 1993, 11, 739-749.	3.8	126
133	Asymmetric cell division in the Drosophila nrevous system. Nature Reviews Neuroscience, 2001, 2, 772-779.	4.9	126
134	Probing ion permeation and gating in a K+ channel with backbone mutations in the selectivity filter. Nature Neuroscience, 2001, 4, 239-246.	7.1	123
135	Peptidergic transmitters in synaptic boutons of sympathetic ganglia. Nature, 1980, 288, 380-382.	13.7	122
136	Identification of structural elements involved in G protein gating of the GIRK1 potassium channel. Neuron, 1995, 15, 1145-1156.	3.8	122
137	Binding of the G protein βγ subunit to multiple regions of G protein-gated inward-rectifying K+ channels. FEBS Letters, 1997, 405, 291-298.	1.3	122
138	hamlet, a Binary Genetic Switch Between Single- and Multiple- Dendrite Neuron Morphology. Science, 2002, 297, 1355-1358.	6.0	122
139	Control of Cell Divisions in the Nervous System: Symmetry and Asymmetry. Annual Review of Neuroscience, 2000, 23, 531-556.	5.0	121
140	Epidermal Cells Are the Primary Phagocytes in the Fragmentation and Clearance of Degenerating Dendrites in Drosophila. Neuron, 2014, 81, 544-560.	3.8	121
141	A new factor related to TATA-binding protein has highly restricted expression patterns in Drosophila. Nature, 1993, 361, 557-561.	13.7	120
142	M-Channels. Archives of Neurology, 2003, 60, 496.	4.9	120
143	The Microtubule Plus-End Tracking Protein EB1 Is Required for Kv1 Voltage-Gated K+ Channel Axonal Targeting. Neuron, 2006, 52, 803-816.	3.8	120
144	Neuronal type information encoded in the basic-helix-loop-helix domain of proneural genes. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 13239-13244.	3.3	119

#	Article	IF	CITATIONS
145	Evidence that the nucleotide exchange and hydrolysis cycle of G proteins causes acute desensitization of G-protein gated inward rectifier K+ channels. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 11727-11732.	3.3	117
146	<i>Drosophila</i> IKK-related kinase lk2 and Katanin p60-like 1 regulate dendrite pruning of sensory neuron during metamorphosis. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 6363-6368.	3.3	117
147	Chemical Genetic Identification of NDR1/2 Kinase Substrates AAK1 and Rabin8ÂUncovers Their Roles in Dendrite Arborization and Spine Development. Neuron, 2012, 73, 1127-1142.	3.8	117
148	TMEM16C facilitates Na+-activated K+ currents in rat sensory neurons and regulates pain processing. Nature Neuroscience, 2013, 16, 1284-1290.	7.1	115
149	Images of purified Shaker potassium channels. Current Biology, 1994, 4, 110-115.	1.8	114
150	Flamingo controls the planar polarity of sensory bristles and asymmetric division of sensory organ precursors in Drosophila. Current Biology, 1999, 9, 1247-S1.	1.8	110
151	A fluorescent probe designed for studying protein conformational change. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 965-970.	3.3	110
152	tramtrack acts downstream of numb to specify distinct daughter cell fates during asymmetric cell divisions in the drosophila PNS. Neuron, 1995, 14, 913-925.	3.8	109
153	ATP-Sensitive Potassium Channel Traffic Regulation by Adenosine and Protein Kinase C. Neuron, 2003, 38, 417-432.	3.8	109
154	The Drosophila Myosin VI Jaguar Is Required for Basal Protein Targeting and Correct Spindle Orientation in Mitotic Neuroblasts. Developmental Cell, 2003, 4, 273-281.	3.1	108
155	Defective Â-aminobutyric acid type B receptor-activated inwardly rectifying K+ currents in cerebellar granule cells isolated from weaver and Girk2 null mutant mice. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 12210-12217.	3.3	107
156	Microfluidic application-specific integrated device for monitoring direct cell-cell communication via gap junctions between individual cell pairs. Applied Physics Letters, 2005, 86, 223902.	1.5	107
157	TAOK2 Kinase Mediates PSD95 Stability and Dendritic Spine Maturation through Septin7 Phosphorylation. Neuron, 2017, 93, 379-393.	3.8	107
158	Stabilization of ion selectivity filter by pore loop ion pairs in an inwardly rectifying potassium channel. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 1568-1572.	3.3	103
159	Two types of asymmetric divisions in the Drosophila sensory organ precursor cell lineage. Nature Cell Biology, 2001, 3, 58-67.	4.6	101
160	Structure, function and pharmacology of human itch GPCRs. Nature, 2021, 600, 170-175.	13.7	101
161	Mutations that affect the length, fasciculation, or ventral orientation of specific sensory axons in the Drosophila embryo. Neuron, 1995, 15, 273-286.	3.8	100
162	G protein-activated inwardly rectifying potassium channels mediate depotentiation of long-term potentiation. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 635-640.	3.3	100

#	Article	IF	CITATIONS
163	Functional expression of Shaker K+ channels in a baculovirus-infected insect cell line. Neuron, 1990, 5, 221-226.	3.8	99
164	Dividing glial cells maintain differentiated properties including complex morphology and functional synapses. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 328-333.	3.3	99
165	Neuronal activity regulates phosphorylation-dependent surface delivery of G protein-activated inwardly rectifying potassium channels. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 629-634.	3.3	98
166	The N terminus of the Drosophila Numb protein directs membrane association and actin-dependent asymmetric localization. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 13005-13010.	3.3	94
167	A LHRH-like peptidergic neurotransmitter capable of â€~action at a distance' in autonomic ganglia. Trends in Neurosciences, 1983, 6, 320-325.	4.2	92
168	Ligand-induced signal transduction within heterodimeric GABAB receptor. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 14643-14648.	3.3	92
169	Female contact modulates male aggression via a sexually dimorphic GABAergic circuit in Drosophila. Nature Neuroscience, 2014, 17, 81-88.	7.1	90
170	Neuronal cell fate specification in Drosophila. Current Opinion in Neurobiology, 1994, 4, 8-13.	2.0	87
171	Ets transcription factor Pointed promotes the generation of intermediate neural progenitors in <i>Drosophila</i> larval brains. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 20615-20620.	3.3	87
172	Rapamycin induces glucose intolerance in mice by reducing islet mass, insulin content, and insulin sensitivity. Journal of Molecular Medicine, 2012, 90, 575-585.	1.7	86
173	Bazooka and atypical protein kinase C are required to regulate oocyte differentiation in the Drosophila ovary. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 14475-14480.	3.3	83
174	Distinct roles of Bazooka and Stardust in the specification of Drosophila photoreceptor membrane architecture. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 12712-12717.	3.3	82
175	A quantitative assessment of models for voltage-dependent gating of ion channels. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 17640-17645.	3.3	79
176	Light-Induced Structural and Functional Plasticity in <i>Drosophila</i> Larval Visual System. Science, 2011, 333, 1458-1462.	6.0	78
177	Spider toxins selectively block calcium currents in drosophila. Neuron, 1989, 3, 767-772.	3.8	77
178	Controlling potassium channel activities: Interplay between the membrane and intracellular factors. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 11016-11023.	3.3	75
179	MST3 Kinase Phosphorylates TAO1/2 to Enable Myosin Va Function in Promoting Spine Synapse Development. Neuron, 2014, 84, 968-982.	3.8	75
180	Phosphorylation of β-Tubulin by the Down Syndrome Kinase, Minibrain/DYRK1a, Regulates Microtubule Dynamics and Dendrite Morphogenesis. Neuron, 2016, 90, 551-563.	3.8	75

#	Article	IF	CITATIONS
181	The Sixth Transmembrane Segment Is a Major Gating Component of the TMEM16A Calcium-Activated Chloride Channel. Neuron, 2018, 97, 1063-1077.e4.	3.8	75
182	EAG2 potassium channel with evolutionarily conserved function as a brain tumor target. Nature Neuroscience, 2015, 18, 1236-1246.	7.1	74
183	Complex Formation with the Type B γ-Aminobutyric Acid Receptor Affects the Expression and Signal Transduction of the Extracellular Calcium-sensing Receptor. Journal of Biological Chemistry, 2007, 282, 25030-25040.	1.6	73
184	Numb-Associated Kinase Interacts with the Phosphotyrosine Binding Domain of Numb and Antagonizes the Function of Numb In Vivo. Molecular and Cellular Biology, 1998, 18, 598-607.	1.1	72
185	Dendrites. Genes and Development, 2001, 15, 2627-2641.	2.7	72
186	Transmembrane channel-like (<i>tmc</i>) gene regulates <i>Drosophila</i> larval locomotion. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7243-7248.	3.3	72
187	Genghis Khan (Gek) as a putative effector for Drosophila Cdc42 and regulator of actin polymerization. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 12963-12968.	3.3	71
188	A PDF/NPF Neuropeptide Signaling Circuitry of Male Drosophila melanogaster Controls Rival-Induced Prolonged Mating. Neuron, 2013, 80, 1190-1205.	3.8	71
189	NO stimulation of ATP-sensitive potassium channels: Involvement of Ras/mitogen-activated protein kinase pathway and contribution to neuroprotection. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 7799-7804.	3.3	68
190	SK channels mediate NADPH oxidase-independent reactive oxygen species production and apoptosis in granulocytes. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 17548-17553.	3.3	68
191	Voltage-gated potassium channel EAC2 controls mitotic entry and tumor growth in medulloblastoma via regulating cell volume dynamics. Genes and Development, 2012, 26, 1780-1796.	2.7	68
192	Immunological characterization of K+ channel components from the Shaker locus and differential distribution of splicing variants in drosophila. Neuron, 1990, 4, 119-127.	3.8	66
193	Increased neuronal activity fragments the Golgi complex. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 1482-1487.	3.3	65
194	Four basic residues critical for the ion selectivity and pore blocker sensitivity of TMEM16A calcium-activated chloride channels. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3547-3552.	3.3	65
195	The determination of sense organs in Drosophila: interaction of scute with daughterless. Roux's Archives of Developmental Biology, 1988, 197, 419-423.	1.2	64
196	Structure prediction for the down state of a potassium channel voltage sensor. Nature, 2007, 445, 550-553.	13.7	64
197	Identification of a dimerization domain in the TMEM16A calcium-activated chloride channel (CaCC). Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6352-6357.	3.3	64
198	Phosphatidylinositol-(4, 5)-bisphosphate regulates calcium gating of small-conductance cation channel TMEM16F. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E1667-E1674.	3.3	62

#	Article	IF	CITATIONS
199	Modulation of Basal and Receptor-Induced GIRK Potassium Channel Activity and Neuronal Excitability by the Mammalian PINS Homolog LGN. Neuron, 2006, 50, 561-573.	3.8	61
200	Polycomb genes interact with the tumor suppressor genes hippo and warts in the maintenance of Drosophila sensory neuron dendrites. Genes and Development, 2007, 21, 956-972.	2.7	58
201	Activation of orexin system facilitates anesthesia emergence and pain control. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E10740-E10747.	3.3	58
202	Drosophila Pod-1 Crosslinks Both Actin and Microtubules and Controls the Targeting of Axons. Neuron, 2003, 39, 779-791.	3.8	57
203	An artificial tetramerization domain restores efficient assembly of functional Shaker channels lacking T1. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 3591-5.	3.3	56
204	Ethanol hypersensitivity and olfactory discrimination defect in mice lacking a homolog of Drosophila neuralized. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 9907-9912.	3.3	55
205	TMEM16A controls EGF-induced calcium signaling implicated in pancreatic cancer prognosis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 13026-13035.	3.3	54
206	A substance P-like peptide in bullfrog autonomic nerve terminals: Anatomy biochemistry and physiology. Neuroscience, 1986, 19, 343-356.	1.1	53
207	Identification of yeast proteins necessary for cell-surface function of a potassium channel. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 18079-18084.	3.3	53
208	Multi-scale spatial heterogeneity enhances particle clearance in airway ciliary arrays. Nature Physics, 2020, 16, 958-964.	6.5	52
209	Deletion analysis of the Drosophila Inscuteable protein reveals domains for cortical localization and asymmetric localization. Current Biology, 1999, 9, 155-158.	1.8	51
210	Differential Regulation of Dendritic and Axonal Development by the Novel Kruppel-Like Factor Dar1. Journal of Neuroscience, 2011, 31, 3309-3319.	1.7	51
211	Lethal Giant Larvae Acts Together with Numb in Notch Inhibition and Cell Fate Specification in the Drosophila Adult Sensory Organ Precursor Lineage. Current Biology, 2003, 13, 778-783.	1.8	50
212	Targeted deletion of numb and numblike in sensory neurons reveals their essential functions in axon arborization. Genes and Development, 2005, 19, 138-151.	2.7	50
213	Regulation of axon regeneration by the RNA repair and splicing pathway. Nature Neuroscience, 2015, 18, 817-825.	7.1	50
214	Thermoregulation via Temperature-Dependent PGD2 Production in Mouse Preoptic Area. Neuron, 2019, 103, 309-322.e7.	3.8	50
215	Sequoia, a Tramtrack-Related Zinc Finger Protein, Functions as a Pan-Neural Regulator for Dendrite and Axon Morphogenesis in Drosophila. Developmental Cell, 2001, 1, 667-677.	3.1	49
216	Contribution of visual and circadian neural circuits to memory for prolonged mating induced by rivals. Nature Neuroscience, 2012, 15, 876-883.	7.1	48

#	Article	IF	CITATIONS
217	Epidermis-Derived Semaphorin Promotes Dendrite Self-Avoidance by Regulating Dendrite-Substrate Adhesion in Drosophila Sensory Neurons. Neuron, 2016, 89, 741-755.	3.8	48
218	Pathogenic polyglutamine proteins cause dendrite defects associated with specific actin cytoskeletal alterations in <i>Drosophila</i> . Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16795-16800.	3.3	47
219	Tracing neurons with a kinesin-?-galactosidase fusion protein. Roux's Archives of Developmental Biology, 1993, 202, 112-122.	1.2	46
220	From The Cover: The immunoglobulin family member dendrite arborization and synapse maturation 1 (Dasm1) controls excitatory synapse maturation. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 13346-13351.	3.3	45
221	Ion Channels in Drosophila. Annual Review of Physiology, 1988, 50, 379-394.	5.6	44
222	From The Cover: Control of dendrite arborization by an Ig family member, dendrite arborization and synapse maturation 1 (Dasm1). Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 13341-13345.	3.3	44
223	Conduits of Life's Spark: A Perspective on Ion Channel Research since the Birth of Neuron. Neuron, 2013, 80, 658-674.	3.8	44
224	Receptor-regulated ion channels. Current Opinion in Cell Biology, 1997, 9, 155-160.	2.6	43
225	Bazooka is required for localization of determinants and controlling proliferation in the sensory organ precursor cell lineage in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 14469-14474.	3.3	43
226	Krüppel Mediates the Selective Rebalancing of Ion Channel Expression. Neuron, 2014, 82, 537-544.	3.8	42
227	Evolving potassium channels by means of yeast selection reveals structural elements important for selectivity. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 4441-4446.	3.3	41
228	Identification and Characterization of a New Class of Trafficking Motifs for Controlling Clathrin-independent Internalization and Recycling. Journal of Biological Chemistry, 2007, 282, 13087-13097.	1.6	41
229	Inferior Olivary TMEM16B Mediates Cerebellar Motor Learning. Neuron, 2017, 95, 1103-1111.e4.	3.8	41
230	Genomic Cloning and Chromosomal Localization of HRY, the Human Homolog to the Drosophila Segmentation Gene, hairy. Genomics, 1994, 20, 56-61.	1.3	40
231	Identification by mass spectrometry and functional characterization of two phosphorylation sites of KCNQ2/KCNQ3 channels. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 17828-17833.	3.3	40
232	Electrostatic interactions in the channel cavity as an important determinant of potassium channel selectivity. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 14355-14360.	3.3	40
233	The role of gene cassettes in axis formation during Drosophila oogenesis. Trends in Genetics, 1994, 10, 89-94.	2.9	38
234	A Defensive Kicking Behavior in Response to Mechanical Stimuli Mediated by <i>Drosophila</i> Wing Margin Bristles. Journal of Neuroscience, 2016, 36, 11275-11282.	1.7	38

#	Article	IF	CITATIONS
235	Identification and purification of an irreversible presynaptic neurotoxin from the venom of the spider Hololena curta Proceedings of the National Academy of Sciences of the United States of America, 1987, 84, 3506-3510.	3.3	36
236	<i>Drosophila Valosin-Containing Protein</i> is required for dendrite pruning through a regulatory role in mRNA metabolism. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7331-7336.	3.3	34
237	In vivo dendrite regeneration after injury is different from dendrite development. Genes and Development, 2016, 30, 1776-1789.	2.7	33
238	Dronc caspase exerts a non-apoptotic function to restrain phospho-Numb-induced ectopic neuroblast formation in <i>Drosophila</i> . Development (Cambridge), 2011, 138, 2185-2196.	1.2	31
239	A potassium channel, the M-channel, as a therapeutic target. Current Opinion in Investigational Drugs, 2005, 6, 704-11.	2.3	30
240	Cytoplasmic Cl ^{â^'} couples membrane remodeling to epithelial morphogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E11161-E11169.	3.3	29
241	Conversion of neurons and glia to external-cell fates in the external sensory organs of Drosophila hamlet mutants by a cousin-cousin cell-type respecification. Genes and Development, 2004, 18, 623-628.	2.7	28
242	Composition and Control of a Deg/ENaC Channel during Presynaptic Homeostatic Plasticity. Cell Reports, 2017, 20, 1855-1866.	2.9	26
243	Glial ensheathment of the somatodendritic compartment regulates sensory neuron structure and activity. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 5126-5134.	3.3	26
244	K+ channel selectivity depends on kinetic as well as thermodynamic factors. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 14361-14366.	3.3	25
245	Epilepsy genes: excitement traced to potassium channels. Nature Genetics, 1998, 18, 6-8.	9.4	24
246	Ectopic scute induces Drosophila ommatidia development without R8 founder photoreceptors. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 6815-6819.	3.3	24
247	Fragile X syndrome: mechanistic insights and therapeutic avenues regarding the role of potassium channels. Current Opinion in Neurobiology, 2012, 22, 887-894.	2.0	24
248	Dynamic change of electrostatic field in TMEM16F permeation pathway shifts its ion selectivity. ELife, 2019, 8, .	2.8	23
249	Chemically induced vesiculation as a platform for studying TMEM16F activity. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 1309-1318.	3.3	22
250	Chloride channels regulate differentiation and barrier functions of the mammalian airway. ELife, 2020, 9, .	2.8	20
251	Ways and means for left shifts in the MaxiK channel. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 13383-13385.	3.3	18
252	Heartfelt crosstalk: desensitization of the GIRK current. Nature Cell Biology, 2000, 2, E165-E167.	4.6	18

#	Article	IF	CITATIONS
253	The Tsc1–Tsc2 complex influences neuronal polarity by modulating TORC1 activity and SAD levels: Figure 1 Genes and Development, 2008, 22, 2447-2453.	2.7	18
254	TMEM16B Calcium-Activated Chloride Channels Regulate Action Potential Firing in Lateral Septum and Aggression in Male Mice. Journal of Neuroscience, 2019, 39, 7102-7117.	1.7	18
255	Chapter 8 The molecular organization of voltage-dependent K+ channels in vivo. Progress in Brain Research, 1995, 105, 87-93.	0.9	17
256	Turning G Proteins On and Off Using Peptide Ligands. ACS Chemical Biology, 2006, 1, 570-574.	1.6	17
257	TMEM16B regulates anxiety-related behavior and GABAergic neuronal signaling in the central lateral amygdala. ELife, 2019, 8, .	2.8	17
258	Neuronal specification. Current Opinion in Genetics and Development, 1992, 2, 608-613.	1.5	15
259	Nâ€linked glycosylation of Kv1.2 voltageâ€gated potassium channel facilitates cell surface expression and enhances the stability of internalized channels. Journal of Physiology, 2016, 594, 6701-6713.	1.3	14
260	Double-bromo and extraterminal (BET) domain proteins regulate dendrite morphology and mechanosensory function. Genes and Development, 2014, 28, 1940-1956.	2.7	13
261	Imaging-based chemical screening reveals activity-dependent neural differentiation of pluripotent stem cells. ELife, 2013, 2, e00508.	2.8	13
262	Kv1.1â€dependent control of hippocampal neuron number as revealed by mosaic analysis with double markers. Journal of Physiology, 2012, 590, 2645-2658.	1.3	12
263	Kv1.1 channels regulate early postnatal neurogenesis in mouse hippocampus via the TrkB signaling pathway. ELife, 2021, 10, .	2.8	12
264	Far away from the lamppost. PLoS Biology, 2018, 16, e3000067.	2.6	10
265	Application of drosophila molecular genetics in the study of neural function — studies of the shaker locus for a potassium channel. Trends in Neurosciences, 1985, 8, 234-238.	4.2	9
266	A late role for a subset of neurogenic genes to limit sensory precursor recruitments in Drosophila embryos. Roux's Archives of Developmental Biology, 1993, 202, 371-381.	1.2	9
267	Asymmetry across species. Nature Cell Biology, 1999, 1, E42-E44.	4.6	9
268	Channeling to the Nucleus. Neuron, 2006, 52, 937-940.	3.8	9
269	TMEM16C is involved in thermoregulation and protects rodent pups from febrile seizures. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2023342118.	3.3	8
270	Assembly of Potassium Channels. Annals of the New York Academy of Sciences, 1993, 707, 51-59.	1.8	7

#	Article	IF	CITATIONS
271	Thrilling Moment of an Inhibitory Channel. Neuron, 2008, 58, 823-824.	3.8	7
272	K _v 1.1 preserves the neural stem cell pool and facilitates neuron maturation during adult hippocampal neurogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	7
273	Some Features of Peptidergic Transmission. Progress in Brain Research, 1983, 58, 49-59.	0.9	6
274	Steroid hormone signaling activates thermal nociception during Drosophila peripheral nervous system development. ELife, 2022, 11, .	2.8	6
275	Muscle connections between imaginal discs in Drosophila. Developmental Biology, 1986, 113, 288-294.	0.9	5
276	Seymour Benzer (1921-2007). Science, 2008, 319, 45-45.	6.0	5
277	Coordination chemistry of 2,6-dimethanol pyridine with early transition metal alkoxide compounds. Journal of Coordination Chemistry, 2015, 68, 1616-1632.	0.8	5
278	A Twist on Potassium Channel Gating. Cell, 2010, 141, 920-922.	13.5	4
279	Chapter 4 Studies of Shaker Mutations Affecting a K+ Channel in Drosophila. Current Topics in Membranes and Transport, 1985, 23, 67-77.	0.6	1
280	Membrane permeability. Current Opinion in Cell Biology, 1996, 8, 449-451.	2.6	1
281	Influences: Cold Spring Harbor summer courses and Drosophila melanogaster neurogenetics. Journal of General Physiology, 2018, 150, 773-775.	0.9	1
282	Primary structure and functional expression of a mouse inward rectifier K+ channel and rat G-protein-coupled muscarinic K+ channel Japanese Journal of Electrocardiology, 1995, 15, 106-113.	0.0	1
283	Expression Profile of Aging and Oxidative Stress Response inDrosophila melanogaster. Scientific World Journal, The, 2001, 1, 138-138.	0.8	0
284	Microtubule Plus-End-Tracking Proteins Target Gap Junctions Directly from the CellÂInterior to Adherens Junctions. Cell, 2008, 133, 376.	13.5	0
285	Lily Jan. Current Biology, 2014, 24, R212-R213.	1.8	0
286	Primary structure and biophysical properties of inward rectifying K+ channel family. Developments in Cardiovascular Medicine, 1996, , 131-139.	0.1	0
287	Potassium Channels, Their Physiological and Molecular Diversity. , 2020, , 1-11.		0