Gaber Magdy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/906671/publications.pdf

Version: 2024-02-01

414414 394421 1,171 48 19 32 citations g-index h-index papers 49 49 49 675 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A sophisticated modeling approach for photovoltaic systems in load frequency control. International Journal of Electrical Power and Energy Systems, 2022, 134, 107330.	5. 5	21
2	Modified TID controller for load frequency control of a two-area interconnected diverse-unit power system. International Journal of Electrical Power and Energy Systems, 2022, 135, 107528.	5 . 5	81
3	An improved Rao algorithm for frequency stability enhancement of nonlinear power system interconnected by AC/DC links with high renewables penetration. Neural Computing and Applications, 2022, 34, 2883-2911.	5 . 6	18
4	Automatic Generation Control of a Future Multisource Power System Considering High Renewables Penetration and Electric Vehicles: Egyptian Power System in 2035. IEEE Access, 2022, 10, 51662-51681.	4.2	11
5	An efficient coordinated strategy for frequency stability in hybrid power systems with renewables considering interline power flow controller and redox flow battery. Journal of Energy Storage, 2022, 52, 104835.	8.1	9
6	Optimal Model Predictive and Linear Quadratic Gaussian Control for Frequency Stability of Power Systems Considering Wind Energy. IEEE Access, 2021, 9, 116453-116474.	4.2	21
7	Adaptive Virtual Inertia-Damping System Based on Model Predictive Control for Low-Inertia Microgrids. IEEE Access, 2021, 9, 109718-109731.	4.2	16
8	Slime Mould Algorithm for Frequency Controller Design of a Two-area Thermal-PV Power System. , 2021, , .		10
9	A new synthetic inertia system based on electric vehicles to support the frequency stability of low-inertia modern power grids. Journal of Cleaner Production, 2021, 297, 126595.	9.3	34
10	A new optimal robust controller for frequency stability of interconnected hybrid microgrids considering non-inertia sources and uncertainties. International Journal of Electrical Power and Energy Systems, 2021, 128, 106651.	5 . 5	45
11	Robust decentralized model predictive load-frequency control design for time-delay renewable power systems. International Journal of Emerging Electric Power Systems, 2021, .	0.8	5
12	A robust PID controller based on linear quadratic gaussian approach for improving frequency stability of power systems considering renewables. ISA Transactions, 2021, 117, 118-138.	5.7	50
13	Frequency Stability of AC/DC Interconnected Power Systems with Wind Energy Using Arithmetic Optimization Algorithm-Based Fuzzy-PID Controller. Sustainability, 2021, 13, 12095.	3.2	27
14	Virtual inertia emulation through virtual synchronous generator based superconducting magnetic energy storage in modern power system. Journal of Energy Storage, 2021, 44, 103466.	8.1	12
15	Superconducting energy storage technology-based synthetic inertia system control to enhance frequency dynamic performance in microgrids with high renewable penetration. Protection and Control of Modern Power Systems, 2021, 6, .	7.5	22
16	Designing Optimal PI ^{\hat{l}»} D ^{\hat{l}/4} Controller for LFC of Two-Area Power Systems Using African Vulture's Optimization Algorithm. , 2021, , .		10
17	Optimal Parameter Design of MPC for Performance Enhancement of a Two-Area Interconnected Power Grid., 2021,,.		1
18	Renewable Power Systems Dynamic Security. Power Systems, 2020, , .	0.5	4

#	Article	IF	Citations
19	An Efficient Control Strategy for Enhancing Frequency Stability of Multi-Area Power System Considering High Wind Energy Penetration. IEEE Access, 2020, 8, 140062-140078.	4.2	36
20	Review of Positive and Negative Impacts of Electric Vehicles Charging on Electric Power Systems. Energies, 2020, 13, 4675.	3.1	121
21	A New Virtual Synchronous Generator Design Based on the SMES System for Frequency Stability of Low-Inertia Power Grids. Energies, 2020, 13, 5641.	3.1	44
22	A Comprehensive Digital Protection Scheme for Low-inertia Microgrids Considering High Penetration of Renewables. Power Systems, 2020, , 39-57.	0.5	2
23	Introduction and Literature Review. Power Systems, 2020, , 1-13.	0.5	0
24	A New Trend in Control of Renewable Power Systems Based on Virtual Synchronous Generator. Power Systems, 2020, , 89-118.	0.5	0
25	Digital Decentralized Control Scheme in Multi-source Power Systems Based on Mapping Technique. Power Systems, 2020, , 119-143.	0.5	0
26	Dynamic Security Assessment of Low-inertia Microgrids Based on the Concept of Virtual Inertia Control. Power Systems, 2020, , 59-87.	0.5	0
27	A New Frequency Control Strategy in Real Power Systems Considering Wind Energy. Power Systems, 2020, , 15-38.	0.5	1
28	A Novel Coordination Scheme of Virtual Inertia Control and Digital Protection for Microgrid Dynamic Security Considering High Renewable Energy Penetration. IET Renewable Power Generation, 2019, 13, 462-474.	3.1	90
29	Renewable power systems dynamic security using a new coordination of frequency control strategy based on virtual synchronous generator and digital frequency protection. International Journal of Electrical Power and Energy Systems, 2019, 109, 351-368.	5 . 5	71
30	Tustin's technique based digital decentralized load frequency control in a realistic multi power system considering wind farms and communications delays. Ain Shams Engineering Journal, 2019, 10, 327-341.	6.1	30
31	A New Frequency Control Strategy in an Islanded Microgrid Using Virtual Inertia Control-Based Coefficient Diagram Method. IEEE Access, 2019, 7, 16979-16990.	4.2	94
32	Discrete-time optimal controller for load frequency control of multi-source power system in Egypt. , 2018, , .		1
33	Optimized coordinated control of LFC and SMES to enhance frequency stability of a real multi-source power system considering high renewable energy penetration. Protection and Control of Modern Power Systems, 2018, 3, .	7. 5	36
34	Frequency Stabilization of Renewable Power Systems Based on MPC With Application to The Egyptian Grid. IFAC-PapersOnLine, 2018, 51, 280-285.	0.9	19
35	Microgrid dynamic security considering high penetration of renewable energy. Protection and Control of Modern Power Systems, 2018, 3, .	7.5	72
36	A robust control strategy for mitigating renewable energy fluctuations in a real hybrid power system combined with SMES. AIP Conference Proceedings, 2018, , .	0.4	0

#	Article	IF	Citations
37	Digital coordination strategy of protection and frequency stability for an islanded microgrid. IET Generation, Transmission and Distribution, 2018, 12, 3637-3646.	2.5	25
38	SMES based a new PID controller for frequency stability of a real hybrid power system considering high wind power penetration. IET Renewable Power Generation, 2018, 12, 1304-1313.	3.1	98
39	Digital frequency protection for micro-grid coordinated with LFC considering high PV/wind penetration level. , $2018, \ldots$		2
40	Enhancement LFC of a Realistic Multi-Source Power System Concerning Wind Farms Using SMES and New Optimized PID Controller. , 2018, , .		0
41	Coordination of Optimal LFC and Digital Frequency Relay for Multi-Source Power System in Egypt. , 2018, , .		1
42	A Novel Design of Decentralized LFC to Enhance Frequency Stability of Egypt Power System Including Wind Farms. International Journal on Energy Conversion, 2018, 6, 17.	0.1	7
43	Frequency stability and digital protection coordination of multi-source power system. International Journal of Smart Grid and Clean Energy, 2018, , 240-251.	0.4	3
44	Decentralized model predictive control strategy of a realistic multi power system automatic generation control. , 2017, , .		13
45	A developed model predictive control algorithm for modular multilevel converter with reduced execution time. , 2017, , .		2
46	Upgrading power system in Egypt towards smart grid., 2017,,.		0
47	Voltage control of modular multilevel converter employing finite control set-model predictive control. , 2017, , .		2
48	A New Coordinated Fuzzy-PID Controller for Power System Considering Electric Vehicles. Energy and Power Engineering, 2017, 09, 425-435.	0.8	4