List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9066438/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Design of SARS-CoV-2 PLpro Inhibitors for COVID-19 Antiviral Therapy Leveraging Binding Cooperativity. Journal of Medicinal Chemistry, 2022, 65, 2940-2955.	2.9	102
2	ACE2-IgG1 fusions with improved inÂvitro and inÂvivo activity against SARS-CoV-2. IScience, 2022, 25, 103670.	1.9	29
3	Engineered ACE2 decoy mitigates lung injury and death induced by SARS-CoV-2 variants. Nature Chemical Biology, 2022, 18, 342-351.	3.9	63
4	Label-Free Digital Detection of Intact Virions by Enhanced Scattering Microscopy. Journal of the American Chemical Society, 2022, 144, 1498-1502.	6.6	26
5	Ebola Entry Inhibitors Discovered from Maesa perlarius. International Journal of Molecular Sciences, 2022, 23, 2620.	1.8	2
6	Comparative analyses of small molecule and antibody inhibition on glycoproteinâ€mediated entry of MÄ>nglà virus with other filoviruses. Journal of Medical Virology, 2022, , .	2.5	2
7	Ebola Virus Entry Inhibitors. Advances in Experimental Medicine and Biology, 2022, 1366, 155-170.	0.8	3
8	Inter-domain communication in SARS-CoV-2 spike proteins controls protease-triggered cell entry. Cell Reports, 2022, 39, 110786.	2.9	37
9	3,4-Seco-Isopimarane Diterpenes from the Twigs and Leaves of Isodon Flavidus. Molecules, 2022, 27, 3098.	1.7	2
10	RNAâ€dependent RNA polymerase of SARSâ€CoVâ€2 as a therapeutic target. Journal of Medical Virology, 2021, 93, 300-310.	2.5	82
11	Biological differentiation of traditional Chinese medicine from excessive to deficient syndromes in AIDS: Comparative microRNA microarray profiling and syndromeâ€specific biomarker identification. Journal of Medical Virology, 2021, 93, 3634-3646.	2.5	4
12	Punicalagin is a neuraminidase inhibitor of influenza viruses. Journal of Medical Virology, 2021, 93, 3465-3472.	2.5	23
13	Flu Universal Vaccines: New Tricks on an Old Virus. Virologica Sinica, 2021, 36, 13-24.	1.2	14
14	Evidence for distinct mechanisms of small molecule inhibitors of filovirus entry. PLoS Pathogens, 2021, 17, e1009312.	2.1	16
15	Ginkgolic acid and anacardic acid are specific covalent inhibitors of SARS-CoV-2 cysteine proteases. Cell and Bioscience, 2021, 11, 45.	2.1	47
16	Identification of a novel inhibitor targeting influenza A virus group 2 hemagglutinins. Antiviral Research, 2021, 186, 105013.	1.9	12
17	Targeting SARS oVâ€⊋ viral proteases as a therapeutic strategy to treat COVIDâ€19. Journal of Medical Virology, 2021, 93, 2722-2734.	2.5	41
18	Stable Axially Chiral Isomers of Arylnaphthalene Lignan Glycosides with Antiviral Potential Discovered from <i>Justicia procumbens</i> . Journal of Organic Chemistry, 2021, 86, 5568-5583.	1.7	12

#	Article	IF	CITATIONS
19	SARS-CoV-2 cell entry and targeted antiviral development. Acta Pharmaceutica Sinica B, 2021, 11, 3879-3888.	5.7	21
20	Discovery of chebulagic acid and punicalagin as novel allosteric inhibitors of SARS-CoV-2 3CLpro. Antiviral Research, 2021, 190, 105075.	1.9	44
21	Signal-regulatory protein alpha is an anti-viral entry factor targeting viruses using endocytic pathways. PLoS Pathogens, 2021, 17, e1009662.	2.1	14
22	Current Development of Glioblastoma Therapeutic Agents. Molecular Cancer Therapeutics, 2021, 20, 1521-1532.	1.9	15
23	Small Molecule Inhibitors of Influenza Virus Entry. Pharmaceuticals, 2021, 14, 587.	1.7	23
24	Identification of the SARS-CoV-2 Entry Receptor ACE2 as a Direct Target for Transcriptional Repression by Miz1. Frontiers in Immunology, 2021, 12, 648815.	2.2	4
25	A recombinant Cedar virus based high-throughput screening assay for henipavirus antiviral discovery. Antiviral Research, 2021, 193, 105084.	1.9	5
26	Direct detection of human adenovirus or SARS-CoV-2 with ability to inform infectivity using DNA aptamer-nanopore sensors. Science Advances, 2021, 7, eabh2848.	4.7	87
27	Lignans and Their Derivatives from Plants as Antivirals. Molecules, 2020, 25, 183.	1.7	92
28	Screening for Anti-Influenza Actives of Prefractionated Traditional Chinese Medicines. Evidence-based Complementary and Alternative Medicine, 2020, 2020, 1-7.	0.5	8
29	Development of coumarine derivatives as potent anti-filovirus entry inhibitors targeting viral glycoprotein. European Journal of Medicinal Chemistry, 2020, 204, 112595.	2.6	10
30	Screening and Reverse-Engineering of Estrogen Receptor Ligands as Potent Pan-Filovirus Inhibitors. Journal of Medicinal Chemistry, 2020, 63, 11085-11099.	2.9	11
31	Discovery and Structural Optimization of 4-(Aminomethyl)benzamides as Potent Entry Inhibitors of Ebola and Marburg Virus Infections. Journal of Medicinal Chemistry, 2020, 63, 7211-7225.	2.9	16
32	A Mother-to-Child Transmission Study in Nigeria: The Impact of Maternal HIV Infection and HAART on Plasma Immunoglobulins, Cytokine Profiles and Infant Outcome. Virologica Sinica, 2020, 35, 468-477.	1.2	4
33	Optimization of 4-Aminopiperidines as Inhibitors of Influenza A Viral Entry That Are Synergistic with Oseltamivir. Journal of Medicinal Chemistry, 2020, 63, 3120-3130.	2.9	21
34	Identification of entry inhibitors with 4-aminopiperidine scaffold targeting group 1 influenza A virus. Antiviral Research, 2020, 177, 104782.	1.9	13
35	Identification of Chebulinic Acid and Chebulagic Acid as Novel Influenza Viral Neuraminidase Inhibitors. Frontiers in Microbiology, 2020, 11, 182.	1.5	36
36	Structure of avian influenza hemagglutinin in complex with a small molecule entry inhibitor. Life Science Alliance, 2020, 3, e202000724.	1.3	13

#	Article	IF	CITATIONS
37	Generation of a Reassortant Influenza A Subtype H3N2 Virus Expressing Gaussia Luciferase. Viruses, 2019, 11, 665.	1.5	8
38	A Parallel Phenotypic Versus Target-Based Screening Strategy for RNA-Dependent RNA Polymerase Inhibitors of the Influenza A Virus. Viruses, 2019, 11, 826.	1.5	15
39	Glycosylated diphyllin as a broad-spectrum antiviral agent against Zika virus. EBioMedicine, 2019, 47, 269-283.	2.7	34
40	Competitive Cooperation of Hemagglutinin and Neuraminidase during Influenza A Virus Entry. Viruses, 2019, 11, 458.	1.5	52
41	LAYN Is a Prognostic Biomarker and Correlated With Immune Infiltrates in Gastric and Colon Cancers. Frontiers in Immunology, 2019, 10, 6.	2.2	280
42	Influenza Virus: Small Molecule Therapeutics and Mechanisms of Antiviral Resistance. Current Medicinal Chemistry, 2019, 25, 5115-5127.	1.2	60
43	Development of Potential Small Molecule Therapeutics for Treatment of Ebola Virus Disease. Current Medicinal Chemistry, 2019, 25, 5177-5190.	1.2	9
44	A Mechanism Underlying Attenuation of Recombinant Influenza A Viruses Carrying Reporter Genes. Viruses, 2018, 10, 679.	1.5	14
45	Identification of Diaryl-Quinoline Compounds as Entry Inhibitors of Ebola Virus. Viruses, 2018, 10, 678.	1.5	24
46	Repurposing potential of 1st generation H1-specific antihistamines as anti-filovirus therapeutics. Antiviral Research, 2018, 157, 47-56.	1.9	24
47	Identification of Ellagic Acid from Plant Rhodiola rosea L. as an Anti-Ebola Virus Entry Inhibitor. Viruses, 2018, 10, 152.	1.5	45
48	A Simple and Robust Approach for Evaluation of Antivirals Using a Recombinant Influenza Virus Expressing Gaussia Luciferase. Viruses, 2018, 10, 325.	1.5	15
49	Anti-HIV diphyllin glycosides from Justicia gendarussa. Phytochemistry, 2017, 136, 94-100.	1.4	51
50	Potent Inhibitor of Drug-Resistant HIV-1 Strains Identified from the Medicinal Plant <i>Justicia gendarussa</i> . Journal of Natural Products, 2017, 80, 1798-1807.	1.5	71
51	Molecular Mechanism Underlying the Action of Influenza A Virus Fusion Inhibitor MBX2546. ACS Infectious Diseases, 2017, 3, 330-335.	1.8	15
52	Identification of a coumarin-based antihistamine-like small molecule as an anti-filoviral entry inhibitor. Antiviral Research, 2017, 145, 24-32.	1.9	26
53	Cell-Based High-Throughput Screening Assay Identifies 2′,2′-Difluoro-2′-deoxycytidine Gemcitabine as a Potential Antipoliovirus Agent. ACS Infectious Diseases, 2017, 3, 45-53.	1.8	17
54	Stabilization and Improvement of a Promising Influenza Antiviral: Making a PAIN PAINless. ACS Infectious Diseases, 2016, 2, 608-615.	1.8	8

#	Article	IF	CITATIONS
55	Bis-biguanide dihydrochloride inhibits intracellular replication of M. tuberculosis and controls infection in mice. Scientific Reports, 2016, 6, 32725.	1.6	8
56	Application of virus-like particles (VLP) to NMR characterization of viral membrane protein interactions. Journal of Biomolecular NMR, 2016, 64, 255-265.	1.6	18
57	Role of EXT1 and Glycosaminoglycans in the Early Stage of Filovirus Entry. Journal of Virology, 2015, 89, 5441-5449.	1.5	54
58	Inhibition of Ebola and Marburg Virus Entry by G Protein-Coupled Receptor Antagonists. Journal of Virology, 2015, 89, 9932-9938.	1.5	90
59	Novel Small Molecule Entry Inhibitors of Ebola Virus. Journal of Infectious Diseases, 2015, 212, S425-S434.	1.9	49
60	A parallel genome-wide RNAi screening strategy to identify host proteins important for entry of Marburg virus and H5N1 influenza virus. Virology Journal, 2015, 12, 194.	1.4	12
61	A Comparative High-Throughput Screening Protocol to Identify Entry Inhibitors of Enveloped Viruses. Journal of Biomolecular Screening, 2014, 19, 100-107.	2.6	37
62	Mutagenesis Studies of the H5 Influenza Hemagglutinin Stem Loop Region. Journal of Biological Chemistry, 2014, 289, 22237-22245.	1.6	10
63	New Small Molecule Entry Inhibitors Targeting Hemagglutinin-Mediated Influenza A Virus Fusion. Journal of Virology, 2014, 88, 1447-1460.	1.5	72
64	Inhibition of Influenza H7 Hemagglutinin-Mediated Entry. PLoS ONE, 2013, 8, e76363.	1.1	25
65	Identification of critical residues of influenza neuraminidase in viral particle release. Virology Journal, 2011, 8, 14.	1.4	17
66	Characterization of the receptor-binding domain of Ebola glycoprotein in viral entry. Virologica Sinica, 2011, 26, 156-70.	1.2	19
67	Identification of a New Region of SARS-CoV S Protein Critical for Viral Entry. Journal of Molecular Biology, 2009, 394, 600-605.	2.0	31
68	Comprehensive Analysis of Ebola Virus GP1 in Viral Entry. Journal of Virology, 2005, 79, 4793-4805.	1.5	144