Maria C Linder

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9066386/publications.pdf

Version: 2024-02-01

91 papers 4,583 citations

34 h-index 65 g-index

92 all docs 92 docs citations 92 times ranked 4237 citing authors

#	Article	IF	CITATIONS
1	Copper biochemistry and molecular biology. American Journal of Clinical Nutrition, 1996, 63, 797S-811S.	2.2	838
2	Ferritin: structure, biosynthesis, and role in iron metabolism Physiological Reviews, 1978, 58, 317-396.	13.1	385
3	Biochemistry of Copper. , 1991, , .		303
4	Copper transport. American Journal of Clinical Nutrition, 1998, 67, 965S-971S.	2.2	251
5	Release of iron from ferritin requires lysosomal activity. American Journal of Physiology - Cell Physiology, 2006, 291, C445-C455.	2.1	221
6	Secretion of Ferritin by Rat Hepatoma Cells and Its Regulation by Inflammatory Cytokines and Iron. Blood, 1997, 90, 4979-4986.	0.6	208
7	Ceruloplasmin and other copper binding components of blood plasma and their functions: an update. Metallomics, 2016, 8, 887-905.	1.0	194
8	Copper and genomic stability in mammals. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2001, 475, 141-152.	0.4	141
9	Mobilization of Stored Iron in Mammals: A Review. Nutrients, 2013, 5, 4022-4050.	1.7	104
10	The relationship of copper to DNA damage and damage prevention in humans. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2012, 733, 83-91.	0.4	101
11	Mechanism of Copper Uptake from Blood Plasma Ceruloplasmin by Mammalian Cells. PLoS ONE, 2016, 11, e0149516.	1.1	87
12	Copper is taken up efficiently from albumin and \hat{l}_{\pm} sub>2-macroglobulin by cultured human cells by more than one mechanism. American Journal of Physiology - Cell Physiology, 2008, 295, C708-C721.	2.1	86
13	Secretion of ferritin by rat hepatoma cells and its regulation by inflammatory cytokines and iron. Blood, 1997, 90, 4979-86.	0.6	78
14	Transcuprein is a macroglobulin regulated by copper and iron availability. Journal of Nutritional Biochemistry, 2007, 18, 597-608.	1.9	73
15	Copper Regulation of Ceruloplasmin in Copper-Deficient Rats. Enzyme, 1979, 24, 23-35.	0.7	72
16	Circulating ceruloplasmin is an important source of copper for normal and malignant animal cells. Biochimica Et Biophysica Acta - General Subjects, 1981, 678, 27-38.	1.1	72
17	Distribution of copper among components of human serum. Journal of the National Cancer Institute, 1985, 75, 277-84.	3.0	68
18	Ran-2, a glial lineage marker, is a GPI-anchored form of ceruloplasmin. Journal of Neuroscience Research, 1998, 54, 147-157.	1.3	63

#	Article	IF	CITATIONS
19	Binding and uptake of copper from ceruloplasmin. Biochemical and Biophysical Research Communications, 1986, 139, 822-829.	1.0	62
20	Ceruloplasmin and Copper Transport During the Latter Part of Gestation in the Rat. Experimental Biology and Medicine, 1993, 203, 428-439.	1.1	59
21	Copper Homeostasis in Mammals, with Emphasis on Secretion and Excretion. A Review. International Journal of Molecular Sciences, 2020, 21, 4932.	1.8	53
22	Copper transport in rats involving a new plasma protein. American Journal of Physiology - Endocrinology and Metabolism, 1985, 249, E77-E88.	1.8	47
23	Copper binding components of blood plasma and organs, and their responses to influx of large doses of 65Cu, in the mouse. BioMetals, 2008, 21, 525-543.	1.8	47
24	Iron Prevents Ferritin Turnover in Hepatic Cells. Journal of Biological Chemistry, 2001, 276, 48775-48780.	1.6	45
25	Serum ferritin: Does it differ from tissue ferritin?. Journal of Gastroenterology and Hepatology (Australia), 1996, 11, 1033-1036.	1.4	42
26	Metabolic and chemical features of ferritins, a series of iron-inducible tissue proteins. American Journal of Pathology, 1973, 72, 263-82.	1.9	42
27	Ferritin and intestinal iron absorption: pancreatic enzymes and free iron. American Journal of Physiology, 1975, 228, 196-204.	5.0	41
28	Copper transport to mammary gland and milk during lactation in rats. American Journal of Physiology - Endocrinology and Metabolism, 2002, 283, E667-E675.	1.8	41
29	ATP7B Expression in Human Breast Epithelial Cells Is Mediated by Lactational Hormones. Journal of Histochemistry and Cytochemistry, 2008, 56, 389-399.	1.3	41
30	Mobilization of iron from ferritin: new steps and details. Metallomics, 2018, 10, 154-168.	1.0	40
31	Effects of copper and ceruloplasmin on iron transport in the Caco 2 cell intestinal model. Journal of Nutritional Biochemistry, 2002, 13, 138-148.	1.9	38
32	Iron and copper homeostasis and intestinal absorption using the Caco2 cell model. BioMetals, 2003, 16, 145-160.	1.8	38
33	Uptake of copper from plasma proteins in cells where expression of CTR1 has been modulated. BioMetals, 2012, 25, 697-709.	1.8	38
34	Interactions of pH and Ascorbate in Intestinal Iron Absorption. Journal of Nutrition, 1983, 113, 2615-2622.	1.3	37
35	Copper Transport in Mammals. Advances in Experimental Medicine and Biology, 1999, 448, 1-16.	0.8	34
36	Milk Ceruloplasmin and Its Expression by Mammary Gland and Liver in Pigs. Archives of Biochemistry and Biophysics, 2000, 373, 451-461.	1.4	34

3

#	Article	IF	CITATIONS
37	Vesicular transport and apotransferrin in intestinal iron absorption, as shown in the Caco-2 cell model. American Journal of Physiology - Renal Physiology, 2006, 290, G301-G309.	1.6	32
38	Copper proteins and ferroxidases in human plasma and that of wild-type and ceruloplasmin knockout mice. Biochemical Journal, 2009, 419, 237-245.	1.7	32
39	Structural differences in ferritins from normal and malignant rat tissues. Biochimica Et Biophysica Acta (BBA) - Protein Structure, 1975, 386, 409-421.	1.7	31
40	The size and shape of heart and muscle ferritins analyzed by sedimentation, gel filtration, and electrophoresis. Journal of Biological Chemistry, 1981, 256, 9104-10.	1.6	31
41	Synthesis and Turnover of Ceruloplasmin in Rats Treated with $17\hat{l}^2$ -Estradiol. Archives of Biochemistry and Biophysics, 1993, 302, 362-368.	1.4	28
42	Size and charge heterogeneity of rat tissue ferritins. Biochimica Et Biophysica Acta (BBA) - Protein Structure, 1975, 412, 148-156.	1.7	26
43	Dissociation of ferritins. Archives of Biochemistry and Biophysics, 1989, 269, 485-496.	1.4	24
44	Comparison of Copper Binding Components in Dog Serum with Those in Other Species. Experimental Biology and Medicine, 1992, 200, 321-329.	1.1	22
45	Structural features of rat cardiac ferritins. Biochimica Et Biophysica Acta (BBA) - Protein Structure, 1977, 491, 67-75.	1.7	19
46	Copper transport during lactation in transgenic mice expressing the human ATP7A protein. Biochemical and Biophysical Research Communications, 2008, 372, 613-617.	1.0	19
47	Regulation of copper absorption by copper availability in the Caco-2 cell intestinal model. American Journal of Physiology - Renal Physiology, 2003, 284, G739-G747.	1.6	18
48	Vesicular transport of Fe and interaction with other metal ions in polarized Caco2 Cell monolayers. Biological Research, 2006, 39, 143-56.	1.5	18
49	Lack of ceruloplasmin expression alters aspects of copper transport to the fetus and newborn, as determined in mice. BioMetals, 2012, 25, 373-382.	1.8	17
50	Ferritin mRNA is found on bound as well as on free polyribosomes in rat heart. Archives of Biochemistry and Biophysics, 1989, 273, 89-98.	1.4	14
51	Copper transport in the Nagase analbuminemic rat. American Journal of Physiology - Renal Physiology, 1994, 267, G259-G269.	1.6	14
52	Sex difference in distribution and iron responsiveness of the two ferritins of rat cardiac and skeletal muscle. Biochimica Et Biophysica Acta - General Subjects, 1977, 497, 280-287.	1.1	13
53	Heart tissue contains small and large aggregates of ferritin subunits. Archives of Biochemistry and Biophysics, 1989, 273, 34-41.	1.4	13
54	Dietary Iron Status Has Little Effect on Expression of Ceruloplasmin but Alters That of Ferritin in Rats. Journal of Nutrition, 2002, 132, 351-356.	1.3	13

#	Article	IF	CITATIONS
55	Apoceruloplasmin: Abundance, Detection, Formation, and Metabolism. Biomedicines, 2021, 9, 233.	1.4	13
56	Ferritin synthesis on polyribosomes attached to the endoplasmic reticulum. Journal of Inorganic Biochemistry, 1992, 47, 229-240.	1.5	11
57	Secretion and uptake of copper via a small copper carrier in blood fluid. Metallomics, 2022, 14, .	1.0	10
58	Concentration, Structure and Iron Saturation of Ferritins from Normal Human Lung and Lung Tumors with Graded Histopathology. Enzyme, 1982, 27, 189-198.	0.7	9
59	Effects of ATP7A overexpression in mice on copper transport and metabolism in lactation and gestation. Physiological Reports, 2014, 2, e00195.	0.7	9
60	Measurement of acute phase proteins in the rat brain: contribution of vascular contents. Neurochemical Research, 1999, 24, 1313-1317.	1.6	8
61	Turnover and excretion of copper in rats as measured with 67Cu. American Journal of Physiology - Endocrinology and Metabolism, 1986, 251, E551-E555.	1.8	7
62	Copper Transport and Ceruloplasmin During Lactation and Pregnancy. , 1999, , 117-129.		1
63	Transcupreins are serum copperâ€transporters of the macroglobulin family, and may be regulated by iron and copper. FASEB Journal, 2006, 20, A553.	0.2	1
64	Release of iron from cellular iron stores in lysosomes: Potential involvement of divalent metal transporter 1 (DMT1) and common metabolites. FASEB Journal, 2012, 26, 1112.6.	0.2	1
65	Copper transporter 1 (CTR1) and the mechanisms of Cu uptake from blood plasma proteins by mammalian cells. FASEB Journal, 2012, 26, 641.19.	0.2	1
66	Relation of Copper Toxicosis in Dogs and Wilson Disease to the Appearance of a Small Copper Carrier (SCC) in Blood Plasma and Urine. FASEB Journal, 2015, 29, 921.2.	0.2	1
67	Comparison of Alphaâ€2â€Macroglobulins from Swine and Humans and their Copper Binding. FASEB Journal, 2019, 33, 825.3.	0.2	1
68	Intestinal uptake of Cu by processes that do not involve copper transporter 1 (CTR1), as determined with Caco2 cell monolayers. FASEB Journal, 2021, 35, .	0.2	0
69	A small copper carrier in blood plasma: purification, characterization, and metabolism. FASEB Journal, 2021, 35, .	0.2	0
70	Unknown low molecular weight ironâ€peptide complexes and their possible contribution to the "labile iron pool†in mammalian cells. FASEB Journal, 2007, 21, A1117.	0.2	0
71	Copper is taken up efficiently from plasma albumin by polarized mammary epithelial cell monolayers. FASEB Journal, 2007, 21, A723.	0.2	0
72	How ferritin releases its iron through entry into lysosomes and proteolysis, and a potential role for DMT1 FASEB Journal, 2007, 21, A163.	0.2	0

#	Article	IF	CITATIONS
73	Copper is taken up efficiently from albumin and alphaâ€2â€macroglobulin by cultured human cells by more than one mechanism. FASEB Journal, 2008, 22, 443.3.	0.2	O
74	Lactational hormones increase expression of milk proteins but do not enhance uptake of copper by mammary epithelial cells. FASEB Journal, 2008, 22, 1192.1.	0.2	0
75	Copper secretion from human breast epithelial cells is mediated by ATP7B and lactational hormones. FASEB Journal, 2008, 22, 443.6.	0.2	O
76	DMT1 is not involved in uptake of copper from the blood plasma by hepatic and mammary epithelial cells. FASEB Journal, 2008, 22, 692.9.	0.2	0
77	Quantitation and characterization of low molecular weight iron complexes in mammalian cells in conditions of iron overload and deficiency that may comprise components of the †labile iron poolâ€. FASEB Journal, 2008, 22, 1057.10.	0.2	0
78	Forms of copper secreted by human mammary epithelial cells in response to lactational hormones. FASEB Journal, 2009, 23, 727.4.	0.2	0
79	Mechanisms of iron release from lysosomes. FASEB Journal, 2009, 23, 921.11.	0.2	0
80	Potential abnormalities in iron metabolism in hyperlipidemia patient fibroblasts. FASEB Journal, 2009, 23, 105.4.	0.2	0
81	Characterizing the chelatable/labile iron pool in mammalian cells. FASEB Journal, 2009, 23, 921.10.	0.2	0
82	Copper distribution and incorporation into ceruloplasmin and other plasma proteins in mice overexpressing ATP7A. FASEB Journal, 2009, 23, 727.5.	0.2	0
83	Trace metal dyshomeostasis is associated with loss of TRPML1 ion channel function. FASEB Journal, 2010, 24, 708.3.	0.2	0
84	The 10â€20â€fold increase in basal copper uptake by mammary gland in lactation is not induced by lactational hormones. FASEB Journal, 2010, 24, 719.3.	0.2	0
85	Common metabolites and reducing/chelating agents do not mobilize iron from intracellular ferritin but can (like lysosomal extracts) dissolve ferritin iron mineral. FASEB Journal, 2010, 24, 717.17.	0.2	0
86	DMT1 is not essential for Cu uptake from blood by internal organs. FASEB Journal, 2010, 24, 229.6.	0.2	0
87	Excess ATP7A reduces the copper content of the mammary gland in pregnancy and lactation but does not alter levels of plasma ceruloplasmin. FASEB Journal, 2010, 24, 719.4.	0.2	0
88	Direct uptake of copper from ceruloplasmin by cells with and without CTR1, and potential involvement of a copper reductase. FASEB Journal, 2012, 26, 1112.1.	0.2	0
89	Mechanism of Ceruloplasminâ€Copper Uptake by, and Overexpression in, Mammalian Cells. FASEB Journal, 2015, 29, 1011.4.	0.2	0
90	Mechanism of Copper Absorption Investigated in Caco2 and HuTu80 Enterocyte Models. FASEB Journal, 2015, 29, 1011.3.	0.2	0

#	Article	IF	CITATIONS
91	Mechanisms of Ferritin Iron Mobilization in Macrophages and Hepatocytes. FASEB Journal, 2015, 29, 1011.2.	0.2	0