Evgeniya S Sheremet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9066351/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Surface-Enhanced Raman Spectroscopy and Electrochemistry: The Ultimate Chemical Sensing and Manipulation Combination. Critical Reviews in Analytical Chemistry, 2024, 54, 110-134.	3.5	2
2	Enhanced selective adsorption and photocatalytic of Ag/Bi2O3 heterostructures modified up-conversion nanoparticles. Journal of Environmental Chemical Engineering, 2022, 10, 107107.	6.7	3
3	Photoinduced flexible graphene/polymer nanocomposites: Design, formation mechanism, and properties engineering. Carbon, 2022, 194, 154-161.	10.3	11
4	Ultraâ€Robust Flexible Electronics by Laserâ€Đriven Polymerâ€Nanomaterials Integration. Advanced Functional Materials, 2021, 31, 2008818.	14.9	49
5	Flexible Electronics: Ultraâ€Robust Flexible Electronics by Laserâ€Driven Polymerâ€Nanomaterials Integration (Adv. Funct. Mater. 17/2021). Advanced Functional Materials, 2021, 31, 2170114.	14.9	2
6	Twisted graphene in graphite: Impact on surface potential and chemical stability. Carbon, 2021, 176, 431-439.	10.3	10
7	A Review of Nanocomposite-Modified Electrochemical Sensors for Water Quality Monitoring. Sensors, 2021, 21, 4131.	3.8	56
8	Chemical Enhancement vs Molecule–Substrate Geometry in Plasmon-Enhanced Spectroscopy. ACS Photonics, 2021, 8, 2243-2255.	6.6	16
9	A review of surface-enhanced Raman spectroscopy in pathological processes. Analytica Chimica Acta, 2021, 1187, 338978.	5.4	16
10	All-inkjet-printed MoS2 field-effect transistors on paper for low-cost and flexible electronics. Applied Nanoscience (Switzerland), 2020, 10, 3649-3658.	3.1	8
11	Patterning GaSe by High-Powered Laser Beams. ACS Omega, 2020, 5, 10183-10190.	3.5	6
12	All-inkjet-printed high-performance flexible MoS2 and MoS2-reduced graphene oxide field-effect transistors. Journal of Materials Science, 2020, 55, 12969-12979.	3.7	5
13	Flexible and water-stable graphene-based electrodes for long-term use in bioelectronics. Biosensors and Bioelectronics, 2020, 166, 112426.	10.1	19
14	Multiwavelength optical sensor based on a gradient photonic crystal with a hexagonal plasmonic array. Sensors and Actuators B: Chemical, 2020, 311, 127837.	7.8	7
15	Polymer Brushes on Graphitic Carbon Nitride for Patterning and as a SERS Active Sensing Layer via Incorporated Nanoparticles. ACS Applied Materials & Interfaces, 2020, 12, 9797-9805.	8.0	29
16	Ultra-Uniform and Very Thin Ag Nanowires Synthesized via the Synergy of Clâ^', Brâ^' and Fe3+ for Transparent Conductive Films. Nanomaterials, 2020, 10, 237.	4.1	11
17	Time-stable wetting effect of plasma-treated biodegradable scaffolds functionalized with graphene oxide. Surface and Coatings Technology, 2020, 388, 125560.	4.8	17
18	Beyond graphene oxide: laser engineering functionalized graphene for flexible electronics. Materials Horizons, 2020, 7, 1030-1041.	12.2	32

EVGENIYA S SHEREMET

#	Article	IF	CITATIONS
19	Localized surface curvature artifacts in tip-enhanced nanospectroscopy imaging. Ultramicroscopy, 2019, 206, 112811.	1.9	4
20	Structural and optical study of Zn-doped As2Se3 thin films: Evidence for photoinduced formation of ZnSe nanocrystallites. AIP Advances, 2019, 9, .	1.3	11
21	Advanced Characterization Methods for Electrical and Sensoric Components and Devices at the Micro and Nano Scales. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1900106.	1.8	4
22	Ionâ€Induced Defects in Graphite: A Combined Kelvin Probe and Raman Microscopy Investigation. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1900055.	1.8	8
23	High-power laser-patterning graphene oxide: A new approach to making arbitrarily-shaped self-aligned electrodes. Carbon, 2019, 151, 148-155.	10.3	20
24	Surface modification with special morphology for the metallization of polyimide film. Applied Surface Science, 2019, 487, 503-509.	6.1	28
25	The correlation between electrical conductivity and second-order Raman modes of laser-reduced graphene oxide. Physical Chemistry Chemical Physics, 2019, 21, 10125-10134.	2.8	122
26	Flexible plasmonic graphene oxide/heterostructures for dual-channel detection. Analyst, The, 2019, 144, 3297-3306.	3.5	18
27	Detection of Dimethoate Pesticide using Layer by Layer Deposition of PDAC/GO on Ag electrode. , 2019, ,		5
28	Non-invasive monitoring of red beet development. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 212, 155-159.	3.9	2
29	Raman Spectroscopy Investigation of Laserâ€Irradiated Singleâ€Walled Carbon Nanotube Films. Physica Status Solidi (B): Basic Research, 2019, 256, 1800412.	1.5	3
30	Aluminum and copper nanostructures for surface-enhanced Raman spectroscopy: A one-to-one comparison to silver and gold. Sensors and Actuators B: Chemical, 2018, 262, 922-927.	7.8	35
31	Bottom-up fabrication of graphene-based conductive polymer carpets for optoelectronics. Journal of Materials Chemistry C, 2018, 6, 4919-4927.	5.5	9
32	Formation of CdSe nanocrystals in Cd-doped thin arsenic selenide films under laser irradiation. Thin Solid Films, 2018, 651, 163-169.	1.8	13
33	Reduced Graphene Oxide Nanostructures by Light: Going Beyond the Diffraction Limit. Journal of Physics: Conference Series, 2018, 1092, 012124.	0.4	0
34	Optical Absorption Imaging by Photothermal Expansion with 4 nm Resolution. ACS Photonics, 2018, 5, 3338-3346.	6.6	4
35	Large-scale self-organized gold nanostructures with bidirectional plasmon resonances for SERS. RSC Advances, 2018, 8, 22569-22576.	3.6	28
36	Novel advanced scoping meta-review methodology for defining a graduate level textbook in an emerging subject area LIBER Quarterly, 2018, 28, 1.	0.7	0

EVGENIYA S SHEREMET

#	Article	IF	CITATIONS
37	Stress imaging in structural challenging MEMS with high sensitivity using micro-Raman spectroscopy. Microelectronics Reliability, 2017, 79, 104-110.	1.7	8
38	Mechanical properties and applications of custom-built gold AFM cantilevers. Mechatronics, 2016, 40, 281-286.	3.3	11
39	Raman based stress analysis of the active areas of a piezoresistive MEMS force sensor — Experimental setup, data processing, and comparison to numerically obtained results. , 2016, , .		1
40	Metal nanoparticles reveal the organization of single-walled carbon nanotubes in bundles. RSC Advances, 2016, 6, 15753-15758.	3.6	11
41	Unraveling The Origin of Enhanced Field Emission from Irradiated FeCo-SiO ₂ Nanocomposites: A Combined Experimental and First-Principles Based Study. ACS Applied Materials & Interfaces, 2016, 8, 4994-5001.	8.0	14
42	Resonant surface-enhanced Raman scattering by optical phonons in a monolayer of CdSe nanocrystals on Au nanocluster arrays. Applied Surface Science, 2016, 370, 410-417.	6.1	13
43	Nanoscale imaging and identification of a four-component carbon sample. Carbon, 2016, 96, 588-593.	10.3	14
44	The substrate matters in the Raman spectroscopy analysis of cells. Scientific Reports, 2015, 5, 13150.	3.3	61
45	Combination of surface- and interference-enhanced Raman scattering by CuS nanocrystals on nanopatterned Au structures. Beilstein Journal of Nanotechnology, 2015, 6, 749-754.	2.8	62
46	Raman, AFM, and TEM profiling of QD multilayer structures. Materials Research Express, 2015, 2, 035003.	1.6	6
47	Back-end-of-line compatible contact materials for carbon nanotube based interconnects. Microelectronic Engineering, 2015, 137, 130-134.	2.4	7
48	Understanding tip-enhanced Raman spectroscopy by multiphysics finite element simulations. , 2015, , .		1
49	Thermo-mechanical characterization of copper through-silicon vias (Cu-TSVs) using micro-Raman spectroscopy and atomic force microscopy. Microelectronic Engineering, 2015, 137, 101-104.	2.4	25
50	Surface- and tip-enhanced Raman spectroscopy reveals spin-waves in iron oxide nanoparticles. Nanoscale, 2015, 7, 9545-9551.	5.6	46
51	Surface- and tip-enhanced resonant Raman scattering from CdSe nanocrystals. Physical Chemistry Chemical Physics, 2015, 17, 21198-21203.	2.8	40
52	Selective Raman modes and strong photoluminescence of gallium selenide flakes on sp2carbon. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2014, 32, 04E106.	1.2	14
53	Enhanced field emission from lanthanum hexaboride coated multiwalled carbon nanotubes: Correlation with physical properties. Journal of Applied Physics, 2014, 116, .	2.5	23
54	Chemical post-treatment and thermoelectric properties of poly(3,4-ethylenedioxylthiophene):poly(styrenesulfonate) thin films. Journal of Applied Physics, 2014, 115, .	2.5	62

EVGENIYA S SHEREMET

#	Article	IF	CITATIONS
55	Surface-enhanced Raman scattering and gap-mode tip-enhanced Raman scattering investigations of phthalocyanine molecules on gold nanostructured substrates. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2014, 32, 04E110.	1.2	15
56	Carbon nanotube based via interconnects: Performance estimation based on the resistance of individual carbon nanotubes. Microelectronic Engineering, 2014, 120, 210-215.	2.4	13
57	Enhanced field emission from cerium hexaboride coated multiwalled carbon nanotube composite films: A potential material for next generation electron sources. Journal of Applied Physics, 2014, 115, .	2.5	14
58	Surface enhanced Raman scattering by organic and inorganic semiconductors formed on laterally ordered arrays of Au nanoclusters. Thin Solid Films, 2013, 543, 35-40.	1.8	26
59	Enhancement of the thermoelectric properties of PEDOT:PSS thin films by post-treatment. Journal of Materials Chemistry A, 2013, 1, 7576.	10.3	305
60	Distinguishing between Individual Contributions to the Via Resistance in Carbon Nanotubes Based Interconnects. ECS Journal of Solid State Science and Technology, 2012, 1, M47-M51.	1.8	6
61	Compact metal probes: A solution for atomic force microscopy based tip-enhanced Raman spectroscopy. Review of Scientific Instruments, 2012, 83, 123708.	1.3	37
62	Carbon/carbon nanocomposites fabricated by base catalyzed twin polymerization of a Si-spiro compound on graphite sheets. Chemical Communications, 2012, 48, 9867.	4.1	22
63	Raman scattering of InAs/AlAs quantum dot superlattices grown on (001) and (311)B GaAs surfaces. Nanoscale Research Letters, 2012, 7, 476.	5.7	7
64	Temperature-dependent Raman investigation of rolled up InGaAs/GaAs microtubes. Nanoscale Research Letters, 2012, 7, 594.	5.7	16
65	Nanoscale optical and electrical characterization of horizontally aligned single-walled carbon nanotubes. Nanoscale Research Letters, 2012, 7, 682.	5.7	18
66	Mechanisms of nanowhisker formation: Monte Carlo simulation. Optoelectronics, Instrumentation and Data Processing, 2009, 45, 342-347.	0.6	7
67	Examination of nanotube growth conditions by Monte Carlo simulation. , 2009, , .		0
68	Effect of substrate-drop parameters on nanowhiskers morphology. , 2008, , .		2