List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9065652/publications.pdf Version: 2024-02-01

SHICEMI KACANA

#	Article	IF	CITATIONS
1	Hypothetical extraction, betweenness centrality, and supply chain complexity. Economic Systems Research, 2022, 34, 111-128.	1.2	12
2	Multi-perspective structural analysis of supply chain networks. Economic Systems Research, 2022, 34, 199-214.	1.2	8
3	A generalized framework for analyzing car lifetime effects on stock, flow, and carbon footprint. Journal of Industrial Ecology, 2022, 26, 433-447.	2.8	9
4	CO2 mitigation through global supply chain restructuring. Energy Economics, 2022, 105, 105768.	5.6	11
5	Spatial autocorrelation analysis of the environmental efficiency of coal-fired power plants in China. Clean Technologies and Environmental Policy, 2022, 24, 2177-2192.	2.1	5
6	Shedding Light on the energy-related social equity of nations toward a just transition. Socio-Economic Planning Sciences, 2022, 83, 101350.	2.5	5
7	Driving propensity and vehicle lifetime mileage: A quantile regression approach. Journal of Environmental Management, 2021, 278, 111499.	3.8	9
8	Material efficiency for climate change mitigation. Journal of Industrial Ecology, 2021, 25, 254-259.	2.8	6
9	Determinants of technical inefficiency in China's coal-fired power plants and policy recommendations for CO2 mitigation. Environmental Science and Pollution Research, 2021, 28, 52064-52081.	2.7	18
10	Do greenhouse gas emissions drive extreme weather conditions at the city level in China? Evidence from spatial effects analysis. Urban Climate, 2021, 37, 100812.	2.4	12
11	Critical supply chains for mitigating PM2.5 emission-related mortalities in India. Scientific Reports, 2021, 11, 11914.	1.6	4
12	Embedding a low-carbon interregional supply chain into a recovery plan for future natural disasters. Journal of Cleaner Production, 2021, 315, 128160.	4.6	9
13	Consumption in the G20 nations causes particulate air pollution resulting in two million premature deaths annually. Nature Communications, 2021, 12, 6286.	5.8	36
14	Affluent countries inflict inequitable mortality and economic loss on Asia via PM2.5 emissions. Environment International, 2020, 134, 105238.	4.8	36
15	Conflicting consequences of price-induced product lifetime extension in circular economy: The impact on metals, greenhouse gas, and sales of air conditioners. Resources, Conservation and Recycling, 2020, 162, 105023.	5.3	9
16	Supply Constraint from Earthquakes in Japan in Input–Output Analysis. Risk Analysis, 2020, 40, 1811-1830.	1.5	10
17	China's <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si1.svg"> <mml:mrow> <mml:msub> <mml:mrow> <mml:mtext>CO </mml:mtext> </mml:mrow> <mml:mro emission structure for 1957–2017 through transitions in economic and environmental policies. lournal of Cleaner Production. 2020. 255. 120288.</mml:mro </mml:msub></mml:mrow></mml:math>	ow> <mml: 4.6</mml: 	:mn>210
18	Drivers of CO ₂ emissions in international aviation: the case of Japan. Environmental Research Letters, 2020, 15, 104036.	2.2	17

#	Article	IF	CITATIONS
19	Industrial clusters with substantial carbon-reduction potential. Economic Systems Research, 2019, 31, 248-266.	1.2	12
20	Spatial economic linkages of economic growth and air pollution: developing an air pollution-multinational CGE model of China, Japan, and Korea. Annals of Regional Science, 2019, 63, 255-268.	1.0	3
21	Economic consequences of the Home Appliance Eco-Point Program in Japan: a dynamic discrete choice approach. Applied Economics, 2019, 51, 4551-4563.	1.2	2
22	Impacts of productive efficiency improvement in the global metal industry on CO2 emissions. Journal of Environmental Management, 2019, 248, 109261.	3.8	23
23	Nexus between economy-wide metal inputs and the deterioration of sustainable development goals. Resources, Conservation and Recycling, 2019, 149, 12-19.	5.3	19
24	Sources of China's Fossil Energy-Use Change. Energies, 2019, 12, 699.	1.6	8
25	How Does Information and Communication Technology Capital Affect Productivity in the Energy Sector? New Evidence from 14 Countries, Considering the Transition to Renewable Energy Systems. Energies, 2019, 12, 1786.	1.6	5
26	Cross-country analysis of relationship between material input structures and consumption-based CO2 emissions. Environmental Economics and Policy Studies, 2019, 21, 533-554.	0.8	3
27	Effects of product replacement programs on climate change. Journal of Cleaner Production, 2019, 221, 157-166.	4.6	5
28	The role of vehicle lifetime extensions of countries on global CO2 emissions. Journal of Cleaner Production, 2019, 207, 1040-1046.	4.6	24
29	Fertility-rate recovery and double-income policies require solving the carbon gap under the Paris Agreement. Resources, Conservation and Recycling, 2018, 133, 385-394.	5.3	24
30	An analysis of urban environmental Kuznets curve of CO2 emissions: Empirical analysis of 276 global metropolitan areas. Applied Energy, 2018, 228, 1561-1568.	5.1	47
31	Role of vehicle inspection policy in climate mitigation: The case of Japan. Journal of Environmental Management, 2018, 224, 87-96.	3.8	14
32	The robustest clusters in the input–output networks: global \$\$hbox {CO}_2\$\$ CO 2 emission clusters. Journal of Economic Structures, 2017, 6, .	0.6	3
33	Economic and social determinants of global physical flows of critical metals. Resources Policy, 2017, 52, 107-113.	4.2	18
34	Identifying critical supply chain paths and key sectors for mitigating primary carbonaceous PM _{2.5} mortality in Asia. Economic Systems Research, 2017, 29, 105-123.	1.2	45
35	Finding environmentally critical transmission sectors, transactions, and paths in global supply chain networks. Energy Economics, 2017, 68, 44-52.	5.6	42
36	The role of primary processing in the supply risks of critical metals. Economic Systems Research, 2017, 29, 335-356.	1.2	23

#	Article	IF	CITATIONS
37	Decomposition of toxicity emission changes on the demand and supply sides: empirical study of the US industrial sector. Environmental Research Letters, 2017, 12, 124008.	2.2	18
38	Understanding international trade network complexity of platinum: The case of Japan. Resources Policy, 2016, 49, 415-421.	4.2	27
39	Influence of income difference on carbon and material footprints for critical metals: the case of Japanese households. Journal of Economic Structures, 2016, 5, .	0.6	14
40	Linking Local Consumption to Global Impacts. Journal of Industrial Ecology, 2016, 20, 382-386.	2.8	26
41	Achieving a low carbon transition in Japan, the role of motor vehicle lifetime. , 2016, , .		0
42	Trends in Japanese households' critical-metals material footprints. Ecological Economics, 2015, 119, 118-126.	2.9	32
43	CO2 emission clusters within global supply chain networks: Implications for climate change mitigation. Global Environmental Change, 2015, 35, 486-496.	3.6	106
44	Carbon footprint analysis through constructing a multi-region input–output table: a case study of Japan. Journal of Economic Structures, 2015, 4, .	0.6	49
45	Global Mining Risk Footprint of Critical Metals Necessary for Low-Carbon Technologies: The Case of Neodymium, Cobalt, and Platinum in Japan. Environmental Science & Technology, 2015, 49, 2022-2031.	4.6	84
46	Environmental and economic performance of a biodiesel plant using waste cooking oil. Journal of Cleaner Production, 2015, 101, 245-250.	4.6	54
47	Measuring the waste footprint of cities in Japan: an interregional waste input–output analysis. Journal of Economic Structures, 2015, 4, .	0.6	26
48	Forecasting Replacement Demand of Durable Goods and the Induced Secondary Material Flows: A Case Study of Automobiles. Journal of Industrial Ecology, 2015, 19, 10-19.	2.8	17
49	Changes in the Carbon Footprint of Japanese Households in an Aging Society. Environmental Science & Technology, 2014, 48, 6069-6080.	4.6	72
50	Global Flows of Critical Metals Necessary for Low-Carbon Technologies: The Case of Neodymium, Cobalt, and Platinum. Environmental Science & Technology, 2014, 48, 1391-1400.	4.6	142
51	MaTrace: Tracing the Fate of Materials over Time and Across Products in Open-Loop Recycling. Environmental Science & Technology, 2014, 48, 7207-7214.	4.6	94
52	Better cars or older cars?: Assessing CO2 emission reduction potential of passenger vehicle replacement programs. Global Environmental Change, 2013, 23, 1807-1818.	3.6	53
53	Production possibility frontier analysis of biodiesel from waste cooking oil. Energy Policy, 2013, 55, 362-368.	4.2	25
54	Finding environmentally important industry clusters: Multiway cut approach using nonnegative matrix factorization. Social Networks, 2013, 35, 423-438.	1.3	41

#	Article	IF	CITATIONS
55	Identifying environmentally important supply chain clusters in the automobile industry. Economic Systems Research, 2013, 25, 265-286.	1.2	27
56	Database Development of Embodied Global-environmental-burden Intensities for Japanese Products with GLIO. Journal of Life Cycle Assessment Japan, 2013, 9, 101-107.	0.0	0
57	Characterization of Economic Requirements for a "Carbon-Debt-Free Country― Environmental Science & Technology, 2012, 46, 155-163.	4.6	29
58	Accounting for Changes in Automobile Gasoline Consumption in Japan: 2000–2007. Journal of Economic Structures, 2012, 1, .	0.6	2
59	Estimates of Embodied Global Energy and Air-Emission Intensities of Japanese Products for Building a Japanese Input–Output Life Cycle Assessment Database with a Global System Boundary. Environmental Science & Technology, 2012, 46, 9146-9154.	4.6	79
60	Impacts of Final Consumptions in Tokyo on Productions and Environmental Loads in Other Regions: An Interregional Waste Input-Output Approach. Journal of Life Cycle Assessment Japan, 2012, 8, 26-36.	0.0	0
61	Role of Motor Vehicle Lifetime Extension in Climate Change Policy. Environmental Science & Technology, 2011, 45, 1184-1191.	4.6	62
62	Identifying the Substance Flow of Metals Embedded in Japanese International Trade by Use of Waste Input-Output Material Flow Analysis (WIO-MFA) Model. ISIJ International, 2011, 51, 1934-1939.	0.6	21
63	Life Cycle Analysis of Lifetime Changes of Durable Goods: The Case of Automobile. Journal of Life Cycle Assessment Japan, 2010, 6, 102-109.	0.0	0
64	IMPROVING THE COMPLETENESS OF PRODUCT CARBON FOOTPRINTS USING A GLOBAL LINK INPUT–OUTPUT MODEL: THE CASE OF JAPAN. Economic Systems Research, 2009, 21, 267-290.	1.2	78
65	Does product lifetime extension increase our income at the expense of energy consumption?. Energy Economics, 2009, 31, 197-210.	5.6	10
66	Material and Energy Dependence of Services and Its Implications for Climate Change. Environmental Science & Technology, 2009, 43, 4241-4246.	4.6	85
67	How Has Dematerialization Contributed to Reducing Oil Price Pressure?: A Qualitative Inputâ^'Output Analysis for the Japanese Economy during 1990â^'2000. Environmental Science & Technology, 2009, 43, 245-252.	4.6	7
68	Industrial Ecology and Input-Output Economics: A Brief History. Eco-efficiency in Industry and Science, 2009, , 43-58.	0.1	5
69	Identifying common features among household consumption patterns optimized to minimize specific environmental burdens. Journal of Cleaner Production, 2008, 16, 538-548.	4.6	23
70	How does Japanese compliance with the Kyoto Protocol affect environmental productivity in China and Japan?. Structural Change and Economic Dynamics, 2008, 19, 173-188.	2.1	4
71	The Economic and Environmental Consequences of Automobile Lifetime Extension and Fuel Economy Improvement: Japan's Case. Economic Systems Research, 2008, 20, 3-28.	1.2	24
72	Theories and Methodologies for Supporting Life Cycle Assessment―Part 2. Journal of Life Cycle Assessment Japan, 2008, 4, 169-174.	0.0	0

#	Article	IF	CITATIONS
73	Simple Indicator To Identify the Environmental Soundness of Growth of Consumption and Technology: "Eco-velocity of Consumptionâ€: Environmental Science & Technology, 2007, 41, 1465-1472.	4.6	24
74	Measuring spatial repercussion effects of regional waste management. Resources, Conservation and Recycling, 2007, 51, 141-174.	5.3	27
75	Proposal of a simple indicator for sustainable consumption: classifying goods and services into three types focusing on their optimal consumption levels. Journal of Cleaner Production, 2007, 15, 879-885.	4.6	11
76	The environmental and economic consequences of product lifetime extension: Empirical analysis for automobile use. Ecological Economics, 2006, 58, 108-118.	2.9	50
77	Inter-industry analysis, consumption structure, and the household waste production structure. Economic Systems Research, 2005, 17, 409-423.	1.2	11
78	Industrial ecology and input-output economics: an introduction. Economic Systems Research, 2005, 17, 349-364.	1.2	59
79	A Simple Multi-Regional Input–Output Account for Waste Analysis. Technology Analysis and Strategic Management, 2004, 16, 1-20.	2.0	0
80	A Simple Multi-Regional Input–Output Account for Waste Analysis. Economic Systems Research, 2004, 16, 1-20.	1.2	27
81	A Spatial Structural Decomposition Analysis of Chinese and Japanese Energy Demand: 1985–1990. Economic Systems Research, 2004, 16, 279-299.	1.2	41
82	A SUPPLY AND DEMAND ANALYSIS OF WASTES EMBODIED IN DOMESTIC ECONOMY. Doboku Gakkai Ronbunshu, 2003, 2003, 77-91.	0.2	0
83	The Invisible Multipliers of Joint-products. Economic Systems Research, 2002, 14, 185-203.	1.2	3
84	INTERNAL DECOMPOSITION ANALYSIS OF ENERGY DEMAND STRUCTURE. Doboku Gakkai Ronbunshu, 2002, 2002, 17-29.	0.2	1
85	A Structural Decomposition of Energy Consumption Based on a Hybrid Rectangular Input-Output Framework: Japan's Case. Economic Systems Research, 2001, 13, 339-363.	1.2	68
86	DECOMPOSITION ANALYSIS OF ENERGY USE STRUCTURE BASED ON A HYBRID RECTANGULAR INPUT-OUTPUT MODEL. Doboku Gakkai Ronbunshu, 2001, 2001, 17-33.	0.2	0
87	A Numerical Analysis of Life Cycle Energy Based on a Hybrid Rectangular Input-Output Framework. Infrastructure Planning Review, 2000, 17, 461-470.	0.1	0
88	Evaluation of Environmental Policy by Using SNA I-O Table Including Environmental Sectors. Infrastructure Planning Review, 1997, 14, 433-442.	0.1	1
89	Proposing effective strategies for meeting an environmental regulation with attainable technology improvement targets. Business Strategy and the Environment, 0, , .	8.5	2